skip to main content


Search for: All records

Creators/Authors contains: "Goyal, Mohit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interactive object understanding, or what we can do to objects and how is a long-standing goal of computer vision. In this paper, we tackle this problem through observation of human hands in in-the-wild egocentric videos. We demonstrate that observation of what human hands interact with and how can provide both the relevant data and the necessary supervision. Attending to hands, readily localizes and stabilizes active objects for learning and reveals places where interactions with objects occur. Analyzing the hands shows what we can do to objects and how. We apply these basic principles on the EPIC-KITCHENS dataset, and successfully learn state-sensitive features, and object affordances (regions of interaction and afforded grasps), purely by observing hands in egocentric videos. 
    more » « less
  2. Mathelier, Anthony (Ed.)
    Abstract Motivation An important step in the transcriptomic analysis of individual cells involves manually determining the cellular identities. To ease this labor-intensive annotation of cell-types, there has been a growing interest in automated cell annotation, which can be achieved by training classification algorithms on previously annotated datasets. Existing pipelines employ dataset integration methods to remove potential batch effects between source (annotated) and target (unannotated) datasets. However, the integration and classification steps are usually independent of each other and performed by different tools. We propose JIND (joint integration and discrimination for automated single-cell annotation), a neural-network-based framework for automated cell-type identification that performs integration in a space suitably chosen to facilitate cell classification. To account for batch effects, JIND performs a novel asymmetric alignment in which unseen cells are mapped onto the previously learned latent space, avoiding the need of retraining the classification model for new datasets. JIND also learns cell-type-specific confidence thresholds to identify cells that cannot be reliably classified. Results We show on several batched datasets that the joint approach to integration and classification of JIND outperforms in accuracy existing pipelines, and a smaller fraction of cells is rejected as unlabeled as a result of the cell-specific confidence thresholds. Moreover, we investigate cells misclassified by JIND and provide evidence suggesting that they could be due to outliers in the annotated datasets or errors in the original approach used for annotation of the target batch. Availability and implementation Implementation for JIND is available at https://github.com/mohit1997/JIND and the data underlying this article can be accessed at https://doi.org/10.5281/zenodo.6246322. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less