skip to main content


Search for: All records

Creators/Authors contains: "Goyal, Navita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AI systems have been known to amplify biases in real-world data. Explanations may help human-AI teams address these biases for fairer decision-making. Typically, explanations focus on salient input features. If a model is biased against some protected group, explanations may include features that demonstrate this bias, but when biases are realized through proxy features, the relationship between this proxy feature and the protected one may be less clear to a human. In this work, we study the effect of the presence of protected and proxy features on participants’ perception of model fairness and their ability to improve demographic parity over an AI alone. Further, we examine how different treatments—explanations, model bias disclosure and proxy correlation disclosure—affect fairness perception and parity. We find that explanations help people detect direct but not indirect biases. Additionally, regardless of bias type, explanations tend to increase agreement with model biases. Disclosures can help mitigate this effect for indirect biases, improving both unfairness recognition and decision-making fairness. We hope that our findings can help guide further research into advancing explanations in support of fair human-AI decision-making. 
    more » « less
    Free, publicly-accessible full text available March 18, 2025
  2. Explainable NLP techniques primarily explain by answering “Which tokens in the input are responsible for this prediction?”. We argue that for NLP models that make predictions by comparing two input texts, it is more useful to explain by answering “What differences between the two inputs explain this prediction?”. We introduce a technique to generate contrastive phrasal highlights that explain the predictions of a semantic divergence model via phrase alignment guided erasure. We show that the resulting highlights match human rationales of cross-lingual semantic differences better than popular post-hoc saliency techniques and that they successfully help people detect fine-grained meaning differences in human translations and critical machine translation errors. 
    more » « less
  3. Large Language Models (LLMs) are increasingly used for accessing information on the web. Their truthfulness and factuality are thus of great interest. To help users make the right decisions about the information they get, LLMs should not only provide information but also help users fact-check it. Our experiments with 80 crowdworkers compare language models with search engines (information retrieval systems) at facilitating fact-checking. We prompt LLMs to validate a given claim and provide corresponding explanations. Users reading LLM explanations are significantly more efficient than those using search engines while achieving similar accuracy. However, they over-rely on the LLMs when the explanation is wrong. To reduce over-reliance on LLMs, we ask LLMs to provide contrastive information - explain both why the claim is true and false, and then we present both sides of the explanation to users. This contrastive explanation mitigates users' over-reliance on LLMs, but cannot significantly outperform search engines. Further, showing both search engine results and LLM explanations offers no complementary benefits compared to search engines alone. Taken together, our study highlights that natural language explanations by LLMs may not be a reliable replacement for reading the retrieved passages, especially in high-stakes settings where over-relying on wrong AI explanations could lead to critical consequences. 
    more » « less