skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Graettinger, Alison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Blasting experiments were performed that investigate multiple explosions that occur in quick succession in unconsolidated ground and their effects on host material and atmosphere. Such processes are known to occur during phreatomagmatic eruptions at various depths, lateral locations, and energies. The experiments follow a multi‐instrument approach in order to observe phenomena in the atmosphere and in the ground, and measure the respective energy partitioning. The experiments show significant coupling of atmospheric (acoustic)‐ and ground (seismic) signal over a large range of (scaled) distances (30–330 m, 1–10 m J−1/3). The distribution of ejected material strongly depends on the sequence of how the explosions occur. The overall crater sizes are in the expected range of a maximum size for many explosions and a minimum for one explosion at a given lateral location. As previous research showed before, peak atmospheric over‐pressure decays exponentially with scaled depth. An exponential decay rate ofwas measured. At a scaled explosion depth of 4 × 10−3 m J−1/3ca. 1% of the blast energy is responsible for the formation of the atmospheric pressure pulse; at a more shallow scaled depth of 2.75 × 10−3 m J−1/3this ratio lies at ca. 5.5%–7.5%. A first order consideration of seismic energy estimates the sum of radiated airborne and seismic energy to be up to 20% of blast energy. Finally, the transient cavity formation during a blast leads to an effectively reduced explosion depth that was determined. Depth reductions of up to 65% were measured. 
    more » « less