skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Graham, Krystal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective. This exploratory study investigates cyclical changes in physiological features across the menstrual cycle in women with epilepsy, focusing on their potential relationship with seizure occurrence.Approach. Nocturnal data during sleep were collected from two women with ovulatory cycles and compared with data from healthy controls, two non-ovulatory women, one postmenopausal woman, and two male patients. The aim was to characterize signal patterns across different reproductive states and to explore whether menstrual-related rhythms correspond to seizure timing. Circular statistics mapped signals onto an angular scale, allowing identification of biphasic patterns linked to ovulation, while machine learning algorithms identified ovulatory phases.Main Results. In ovulatory participants, seizure activity predominantly occurred around the late luteal and early follicular phases (p < 0.05), and non-uniform and biphaisc trends were observed in temperature, resembling patterns in healthy participants. In contrast, individuals taking enzyme-inducing antiepileptic drugs showed disrupted physiological rhythms. Although hormonal fluctuations appear to drive cyclical patterns, additional rhythms (e.g. weekly) were also observed, suggesting multifactorial influences.Significance. These preliminary findings underscore the need to account for menstrual and other biological cycles in seizure forecasting models and provide a foundation for future studies involving larger cohorts. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026