SX Phoenicis (SXP) variables are short-period pulsating stars that exhibit a period–luminosity (PL) relation. We derived the
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract gri -band PL and extinction-free period–Wesenheit (PW) relations, as well as the period-color and reddening-free period-Q-index relations for 47 SXP stars located in 21 globular clusters, using the optical light curves taken from Zwicky Transient Facility. These empirical relations were derived for the first time in thegri filters except for theg -band PL relation. We used ourgi -band PL and PW relations to derive a distance modulus to Crater II dwarf spheroidal which hosts one SXP variable. Assuming that the fundamental and first-overtone pulsation mode for the SXP variable in Crater II, we found distance moduli of 20.03 ± 0.23 mag and 20.37 ± 0.24 mag, respectively, using the PW relation, where the latter is in excellent agreement with independent RR Lyrae based distance to Crater II dwarf galaxy. -
Abstract We report multiwavelength observations and characterization of the ultraluminous transient AT 2021lwx (ZTF20abrbeie; aka “Barbie”) identified in the alert stream of the Zwicky Transient Facility (ZTF) using a Recommender Engine For Intelligent Transient Tracking filter on the ANTARES alert broker. From a spectroscopically measured redshift of 0.995, we estimate a peak-observed pseudo-bolometric luminosity of log( L max / [ erg s − 1 ] ) = 45.7 from slowly fading ztf- g and ztf- r light curves spanning over 1000 observer-frame days. The host galaxy is not detected in archival Pan-STARRS observations ( g > 23.3 mag), implying a lower limit to the outburst amplitude of more than 5 mag relative to the quiescent host galaxy. Optical spectra exhibit strong emission lines with narrow cores from the H Balmer series and ultraviolet semi-forbidden lines of Si iii ] λ 1892, C iii ] λ 1909, and C ii ] λ 2325. Typical nebular lines in Active Galactic Nucleus (AGN) spectra from ions such as [O ii ] and [O iii ] are not detected. These spectral features, along with the smooth light curve that is unlike most AGN flaring activity and the luminosity that exceeds any observed or theorized supernova, lead us to conclude that AT 2021lwx is most likely an extreme tidal disruption event (TDE). Modeling of ZTF photometry with MOSFiT suggests that the TDE was between a ≈14 M ⊙ star and a supermassive black hole of mass M BH ∼ 10 8 M ⊙ . Continued monitoring of the still-evolving light curve along with deep imaging of the field once AT 2021lwx has faded can test this hypothesis and potentially detect the host galaxy.more » « lessFree, publicly-accessible full text available May 1, 2024
-
ABSTRACT The scarce optical variability studies in spectrally classified Type 2 active galactic nuclei (AGNs) have led to the discovery of anomalous objects that are incompatible with the simplest unified models (UMs). This paper focuses on the exploration of different variability features that allow to distinguish between obscured, Type 2 AGNs and the variable, unobscured Type 1s. We analyse systematically the Zwicky Transient Facility, 2.5-yr-long light curves of ∼15 000 AGNs from the Sloan Digital Sky Survey Data Release 16, which are generally considered Type 2s due to the absence of strong broad emission lines (BELs). Consistent with the expectations from the UM, the variability features are distributed differently for distinct populations, with spectrally classified weak Type 1s showing one order of magnitude larger variances than the Type 2s. We find that the parameters given by the damped random walk model lead to broader H α equivalent width for objects with τg > 16 d and long-term structure function SF∞, g > 0.07 mag. By limiting the variability features, we find that ∼11 per cent of Type 2 sources show evidence for optical variations. A detailed spectral analysis of the most variable sources (∼1 per cent of the Type 2 sample) leads to the discovery of misclassified Type 1s with weak BELs and changing-state candidates. This work presents one of the largest systematic investigations of Type 2 AGN optical variability to date, in preparation for future large photometric surveys.
-
Abstract Magnetic cataclysmic variables (CVs) are luminous Galactic X-ray sources, which have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope on board the Spektr-RG mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Transient Facility and discovered two new magnetic CVs. We obtained high-cadence optical photometry and phase-resolved spectroscopy for each magnetic CV candidate and found them both to be polars. Among the newly discovered magnetic CVs is eFEDS J085037.2+044359/ZTFJ0850+0443, an eclipsing polar with orbital period P orb = 1.72 hr and WD mass M WD = 0.81 ± 0.08 M ⊙ . We suggest that eFEDS J085037.2+044359/ZTFJ0850+0443 is a low magnetic field strength polar, with B WD ≲ 10 MG. We also discovered a non-eclipsing polar, eFEDS J092614.1+010558/ZTFJ0926+0105, with orbital period P orb = 1.47 hr and magnetic field strength B WD = 36–42 MG.more » « lessFree, publicly-accessible full text available March 1, 2024
-
Abstract We present the first gri -band period–luminosity (PL) and period–Wesenheit (PW) relations for 37 Type II Cepheids (TIICs) located in 18 globular clusters based on photometric data from the Zwicky Transient Facility. We also updated BVIJHK -band absolute magnitudes for 58 TIICs in 24 globular clusters using the latest homogeneous distances to the globular clusters. The slopes of g / r / i - and B / V / I -band PL relations are found to be statistically consistent when using the same sample of distance and reddening. We employed the calibration of ri -band PL/PW relations in globular clusters to estimate a distance to M31 based on a sample of ∼270 TIICs from the PAndromeda project. The distance modulus to M31, obtained using calibrated ri -band PW relation, agrees well with the recent determination based on classical Cepheids. However, distance moduli derived using the calibrated r - and i -band PL relations are systematically smaller by ∼0.2 mag, suggesting there are possible additional systematic errors on the PL relations. Finally, we also derive the period–color (PC) relations and for the first time the period–Q-index (PQ) relations, where the Q -index is reddening free, for our sample of TIICs. The PC relations based on ( r − i ) and near-infrared colors and the PQ relations are found to be relatively independent of the pulsation periods.more » « less
-
Abstract We present the first
gri -band period–luminosity (PL) and period–Wesenheit (PW) relations for the fundamental mode anomalous Cepheids. These PL and PW relations were derived from a combined sample of five anomalous Cepheids in globular cluster M92 and the Large Magellanic Cloud, both of which have distance accurate to ∼1% available from literature. Ourg -band PL relation is similar to theB -band PL relation as reported in previous study. We applied our PL and PW relations to anomalous Cepheids discovered in dwarf galaxy Crater II, and found a larger but consistent distance modulus than the recent measurements based on RR Lyrae. Our calibrations ofgri -band PL and PW relations, even though less precise due to small number of anomalous Cepheids, will be useful for distance measurements to dwarf galaxies. -
Abstract We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (
M BH) with host galaxy scaling relations, showing that the sampleM BHranges from 105.1M ⊙to 108.2M ⊙. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg -band luminosity function can be well described by a broken power law of , withL bk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (M BH/M ⊙) ≲ 107.3, the TDE mass function follows , which favors a flat local BH mass function ( ). We confirm the significant rate suppression at the high-mass end (M BH≳ 107.5M ⊙), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofM gal∼ 1010M ⊙, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors. -
Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.more » « lessFree, publicly-accessible full text available April 1, 2024
-
Abstract While it is difficult to observe the first black hole seeds in the early universe, we can study intermediate-mass black holes (IMBHs) in local dwarf galaxies for clues about their origins. In this paper we present a sample of variability-selected active galactic nuclei (AGN) in dwarf galaxies using optical photometry from the Zwicky Transient Facility (ZTF) and forward-modeled mid-IR photometry of time-resolved Wide-field Infrared Survey Explorer (WISE) co-added images. We found that 44 out of 25,714 dwarf galaxies had optically variable AGN candidates and 148 out of 79,879 dwarf galaxies had mid-IR variable AGN candidates, corresponding to active fractions of 0.17% ± 0.03% and 0.19% ± 0.02%, respectively. We found that spectroscopic approaches to AGN identification would have missed 81% of our ZTF IMBH candidates and 69% of our WISE IMBH candidates. Only nine candidates have been detected previously in radio, X-ray, and variability searches for dwarf galaxy AGN. The ZTF and WISE dwarf galaxy AGN with broad Balmer lines have virial masses of 10 5 M ⊙ < M BH < 10 7 M ⊙ , but for the rest of the sample, BH masses predicted from host galaxy mass range between 10 5.2 M ⊙ < M BH < 10 7.25 M ⊙ . We found that only 5 of 152 previously reported variability-selected AGN candidates from the Palomar Transient Factory in common with our parent sample were variable in ZTF. We also determined a nuclear supernova fraction of 0.05% ± 0.01% yr −1 for dwarf galaxies in ZTF. Our ZTF and WISE IMBH candidates show the promise of variability searches for the discovery of otherwise hidden low-mass AGN.more » « less
-
Abstract We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (
T eff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σ significance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withL X∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.