skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Graham, T. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We simulate the Lipkin-Meshkov-Glick model using the variational-quantum-eigensolver algorithm on a neutral atom quantum computer. We test the ground-state energy of spin systems with up to 15 spins. Two different encoding schemes are used: an individual spin encoding where each spin is represented by one qubit, and an efficient Gray code encoding scheme that only requires a number of qubits that scales with the logarithm of the number of spins. This more efficient encoding, together with zero-noise extrapolation techniques, is shown to improve the fidelity of the simulated energies with respect to exact solutions. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. In this study, we simulated the algorithmic performance of a small neutral atom quantum computer and compared its performance when operating with all-to-all versus nearest-neighbor connectivity. This comparison was made using a suite of algorithmic benchmarks developed by the Quantum Economic Development Consortium. Circuits were simulated with a noise model consistent with experimental data from [Nature 604, 457 (2022)]. We find that all-to-all connectivity improves simulated circuit fidelity by [Formula: see text]–[Formula: see text], compared to nearest-neighbor connectivity. 
    more » « less
  4. null (Ed.)