skip to main content

Search for: All records

Creators/Authors contains: "Graly, Joseph A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. Abstract Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during coldermore »glacial periods or entrained more proximal to the moraine sequence.« less
  3. ABSTRACT Stable isotopes of water (δ 18 O and δ 2 H) were measured in the debris-laden ice underlying an Antarctic blue ice moraine, and in adjoining Law Glacier in the central Transantarctic Mountains. Air bubble content and morphology were assessed in shallow ice core samples. Stable isotope measurements plot either on the meteoric waterline or are enriched from it. The data cluster in two groups: the ice underlying the moraine has a δ 2 H:δ 18 O slope of 5.35 ± 0.92; ice from adjoining portions of Law Glacier has a slope of 6.69 ± 1.39. This enrichment pattern suggests the moraine's underlying blue ice entrained sediment through refreezing processes acting in an open system. Glaciological conditions favorable to warm-based sediment entrainment occur 30–50 km upstream. Basal melting and refreezing are further evidenced by abundant vapor figures formed from internal melting of the ice crystals. Both the moraine ice and Law Glacier are sufficiently depleted of heavy isotopes that their ice cannot be sourced locally, but instead must be derived from far-field interior regions of the higher polar plateau. Modeled ice flow speeds suggest the ice must be at least 80 ka old, with Law Glacier's ice possibly datingmore »to OIS 5 and moraine ice older still.« less