Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we introduce a novel approach to assistive exoskeleton (or powered orthosis) control which avoids needing task and gait phase information. Our approach is based on directly designing the Hamiltonian dynamics of the target closed-loop behavior, shaping the energy of the human and the robot. Relative to previous energy shaping controllers for assistive exoskeletons, we introduce ground reaction force and torque information into the target behavior definition, reformulate the kinematics so as to avoid explicit matching conditions due to under-actuation, and avoid the need to switch between swing and stance energy shapes. Our controller introduces new states intomore »
-
Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »Free, publicly-accessible full text available December 1, 2023
-
Free, publicly-accessible full text available September 1, 2022
-
Free, publicly-accessible full text available May 1, 2023
-
Free, publicly-accessible full text available April 1, 2023
-
Abstract We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds nomore »Free, publicly-accessible full text available April 1, 2023
-
Free, publicly-accessible full text available March 1, 2023