Polyphosphonates, a class of polymers with the generic formula –[P(R)(X)–OR'O]n–, exhibit a high degree of modularity due to the range of R, R', and X groups that can be incorporated. As such, these polymers may be designed with a polyethylene oxide (PEO) backbone (R' group) and employed as solid polymer electrolytes (SPEs). Two PEO‐containing polyphosphonate analogs (R = Ph; X = S or Se) were doped with LiPF6and their conductivities were measured. Conductivities were similar (X = S) to or exceeding (X = Se) those of standard PEO systems (just below 10−4S/cm at 100°C). Binding models for Li+were generated using31P{1H}NMR titration experiments. Binding of Li+by these polyphosphonates followed a positive cooperativity model, and varying the X group (S or Se) affected the observed cooperativity (Hill coefficient = 1.73 and 4.16, respectively). The presence of Se also leads to an increase in conductivity as temperature is raised above the Tg, which is likely an effect of reduced Columbic interactions. Because of their modularity and ease with which cation binding can be evaluated using31P{1H} NMR titration experiments, polyphosphonates offer a unique approach for the modification of Li+ion battery technology.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures and
T gprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da. -
Abstract X‐ray radiation exhibits diminished scattering and a greater penetration depth in tissue relative to the visible spectrum and has spawned new medical imaging techniques that exploit X‐ray luminescence of nanoparticles. The majority of the nanoparticles finding applications in this field incorporate metals with high atomic numbers and pose potential toxicity effects. Here, a general strategy for the preparation of a fully organic X‐ray radioluminescent colloidal platform that can be tailored to emit anywhere in the visible spectrum through a judicious choice in donor/acceptor pairing and multiple sequential Förster resonance energy transfers (FRETs) is presented. This is demonstrated with three different types of ≈100 nm particles that are doped with anthracene as the scintillating molecule to “pump” subsequent FRET dye pairs that result in emissions from ≈400 nm out past 700 nm. The particles can be self‐assembled in crystalline colloidal arrays, and the radioluminescence of the particles can be dynamically tuned by coupling the observed rejection wavelength with the dyes' emission.
-