skip to main content


Search for: All records

Creators/Authors contains: "Gray, Harry B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Manganese ([Mn(CO) 3 ]) and rhenium tricarbonyl ([Re(CO) 3 ]) complexes represent a workhorse family of compounds with applications in a variety of fields. Here, the coordination, structural, and electrochemical properties of a family of mono- and bimetallic [Mn(CO) 3 ] and [Re(CO) 3 ] complexes are explored. In particular, a novel heterobimetallic complex featuring both [Mn(CO) 3 ] and [Re(CO) 3 ] units supported by 2,2′-bipyrimidine (bpm) has been synthesized, structurally characterized, and compared to the analogous monomeric and homobimetallic complexes. To enable a comprehensive structural analysis for the series of complexes, we have carried out new single crystal X-ray diffraction studies of seven compounds: Re(CO) 3 Cl(bpm), anti -[{Re(CO 3 )Cl} 2 (bpm)], Mn(CO) 3 Br(bpz) (bpz = 2,2′-bipyrazine), Mn(CO) 3 Br(bpm), syn - and anti -[{Mn(CO 3 )Br} 2 (bpm)], and syn -[Mn(CO 3 )Br(bpm)Re(CO) 3 Br]. Electrochemical studies reveal that the bimetallic complexes are reduced at much more positive potentials (Δ E ≥ 380 mV) compared to their monometallic analogues. This redox behavior is consistent with introduction of the second tricarbonyl unit which inductively withdraws electron density from the bridging, redox-active bpm ligand, resulting in more positive reduction potentials. [Re(CO 3 )Cl] 2 (bpm) was reduced with cobaltocene; the electron paramagnetic resonance spectrum of the product exhibits an isotropic signal (near g = 2) characteristic of a ligand-centered bpm radical. Our findings highlight the facile synthesis as well as the structural characteristics and unique electrochemical behavior of this family of complexes. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Elucidating the factors that control charge transfer rates in relatively flexible conjugates is of importance for understanding energy flows in biology as well as assisting the design and construction of electronic devices. Here, we report ultrafast electron transfer (ET) and hole transfer (HT) between a corrole (Cor) donor linked to a perylene-diimide (PDI) acceptor by a tetrameric alanine (Ala) 4 . Selective photoexcitation of the donor and acceptor triggers subpicosecond and picosecond ET and HT. Replacement of the (Ala) 4 linker with either a single alanine or phenylalanine does not substantially affect the ET and HT kinetics. We infer that electronic coupling in these reactions is not mediated by tetrapeptide backbone nor by direct donor–acceptor interactions. Employing a combination of NMR, circular dichroism, and computational studies, we show that intramolecular hydrogen bonding brings the donor and the acceptor into proximity in a “scorpion-shaped” molecular architecture, thereby accounting for the unusually high ET and HT rates. Photoinduced charge transfer relies on a (Cor)NH … O=C–NH … O=C(PDI) electronic-coupling pathway involving two pivotal hydrogen bonds and a central amide group as a mediator. Our work provides guidelines for construction of effective donor–acceptor assemblies linked by long flexible bridges as well as insights into structural motifs for mediating ET and HT in proteins. 
    more » « less
  5. null (Ed.)