Photonics offers unique capabilities for quantum information processing (QIP) such as room-temperature operation, the scalability of nanophotonics, and access to ultrabroad bandwidths and consequently ultrafast operation. Ultrashort pulse sources of quantum states in nanophotonics are an important building block for achieving scalable ultrafast QIP; however, their demonstrations so far have been sparse. Here, we demonstrate a femtosecond biphoton source in dispersion-engineered periodically poled lithium niobate nanophotonics. We measure 17 THz of bandwidth for the source centered at 2.09 µm, corresponding to a few optical cycles, with a brightness of 8.8 GHz/mW. Our results open new paths toward realization of ultrafast nanophotonic QIP.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available June 13, 2025 -
We theoretically describe and experimentally observe signatures of spontaneous topological soliton formation through the locking of domain walls in a quadratic nonlinear resonator. These dark pulses can have a temporal duration of 65 fs.
Free, publicly-accessible full text available January 1, 2025 -
We show that soliton pulse compression in lithium niobate nanophotonics can enable formation of few-cycle pulses. We experimentally confirm such nonlinear dynamics and measure chirped 44-fs output pulses consistent with numerical simulations.
Free, publicly-accessible full text available January 1, 2025 -
We experimentally demonstrate a recurrent optical neural network based on a nanophotonic optical parametric oscillator fabricated on thin-film lithium niobate. Our demonstration paves the way for realizing optical neural networks exhibiting ultra-low la-tencies.
Free, publicly-accessible full text available January 1, 2025 -
We experimentally observe signatures of 475-fs-long sech-squared-shaped solitons in a ps-pumped phase-mismatched parametric oscillator in the normal dispersion regime, purely due to cascaded quadratic nonlinearities. The results are in good agreement with our theoretical predictions.
Free, publicly-accessible full text available January 1, 2025 -
Mode-locked lasers (MLLs) generate ultrashort pulses with peak powers substantially exceeding their average powers. However, integrated MLLs that drive ultrafast nanophotonic circuits have remained elusive because of their typically low peak powers, lack of controllability, and challenges when integrating with nanophotonic platforms. In this work, we demonstrate an electrically pumped actively MLL in nanophotonic lithium niobate based on its hybrid integration with a III-V semiconductor optical amplifier. Our MLL generates
4.8-ps optical pulses around 1065 nm at a repetition rate of ∼10 GHz, with energies exceeding 2.6 pJ and peak powers beyond 0.5 W. The repetition rate and the carrier-envelope offset frequency of the output can be controlled in a wide range by using the driving frequency and the pump current, providing a route for fully stabilized on-chip frequency combs. Free, publicly-accessible full text available November 10, 2024 -
Neural networks based on Cellular Automata (CA) have recently yielded more robust, reliable, and parameter-efficient machine learning models. We experimentally demonstrate the first photonic implementation of CA which successfully performs image classification on the Fashion-MNIST dataset.
-
Abstract Dual-comb spectroscopy has been proven beneficial in molecular characterization but remains challenging in the mid-infrared region due to difficulties in sources and efficient photodetection. Here we introduce cross-comb spectroscopy, in which a mid-infrared comb is upconverted via sum-frequency generation with a near-infrared comb of a shifted repetition rate and then interfered with a spectral extension of the near-infrared comb. We measure CO2absorption around 4.25 µm with a 1-µm photodetector, exhibiting a 233-cm−1instantaneous bandwidth, 28000 comb lines, a single-shot signal-to-noise ratio of 167 and a figure of merit of 2.4 × 106Hz1/2. We show that cross-comb spectroscopy can have superior signal-to-noise ratio, sensitivity, dynamic range, and detection efficiency compared to other dual-comb-based methods and mitigate the limits of the excitation background and detector saturation. This approach offers an adaptable and powerful spectroscopic method outside the well-developed near-IR region and opens new avenues to high-performance frequency-comb-based sensing with wavelength flexibility.