skip to main content


Search for: All records

Creators/Authors contains: "Green, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less
  2. We report the use of suboxide molecular-beam epitaxy (S-MBE) to grow β-Ga2O3 at a growth rate of ∼1 μm/h with control of the silicon doping concentration from 5 × 1016 to 1019 cm−3 . In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga2O, i.e., gallium suboxide, is supplied. Directly supplying Ga2O to the growth surface bypasses the rate-limiting frst step of the two-step reaction mechanism involved in the growth of β-Ga2O3 by conventional MBE. As a result, a growth rate of ∼1 μm/h is readily achieved at a relatively low growth temperature (Tsub ≈ 525 ○C), resulting in flms with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 μm thick flms). Silicon-containing oxide sources (SiO and SiO2) producing an SiO suboxide molecular beam are used to dope the β-Ga2O3 layers. Temperature-dependent Hall effect measurements on a 1 μm thick flm with a mobile carrier concentration of 2.7 × 1017 cm−3 reveal a room-temperature mobility of 124 cm2 V−1 s −1 that increases to 627 cm2 V −1 s−1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor feld-effect transistors made from these silicon-doped β-Ga2O3 flms grown by S-MBE at growth rates of ∼1 μm/h. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  3. We report the use of suboxide molecular-beam epitaxy ( S-MBE) to grow β-Ga 2 O 3 at a growth rate of ∼1 µm/h with control of the silicon doping concentration from 5 × 10 16 to 10 19  cm −3 . In S-MBE, pre-oxidized gallium in the form of a molecular beam that is 99.98% Ga 2 O, i.e., gallium suboxide, is supplied. Directly supplying Ga 2 O to the growth surface bypasses the rate-limiting first step of the two-step reaction mechanism involved in the growth of β-Ga 2 O 3 by conventional MBE. As a result, a growth rate of ∼1 µm/h is readily achieved at a relatively low growth temperature ( T sub ≈ 525 °C), resulting in films with high structural perfection and smooth surfaces (rms roughness of <2 nm on ∼1 µm thick films). Silicon-containing oxide sources (SiO and SiO 2 ) producing an SiO suboxide molecular beam are used to dope the β-Ga 2 O 3 layers. Temperature-dependent Hall effect measurements on a 1 µm thick film with a mobile carrier concentration of 2.7 × 10 17  cm −3 reveal a room-temperature mobility of 124 cm 2  V −1  s −1 that increases to 627 cm 2  V −1  s −1 at 76 K; the silicon dopants are found to exhibit an activation energy of 27 meV. We also demonstrate working metal–semiconductor field-effect transistors made from these silicon-doped β-Ga 2 O 3 films grown by S-MBE at growth rates of ∼1 µm/h. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024