Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we investigate how radio frequency heating of admixture of catalyst and RF susceptor can drive the propane dehydrogenation reaction, enabling distributed chemical manufacturing based on electric power rather than fossil fuel heating.more » « lessFree, publicly-accessible full text available November 19, 2025
-
The major challenge to fabricate MXene/polymer composites are the processing conditions and poor control over the distribution of the MXene nanosheets within the polymer matrix. Traditional ways involve the direct mix of fillers and polymers to form a random homogeneous composite, which leads to inefficient use of fillers. To address these challenges, researchers have focused on the development of ordered MXene/polymer composite structures using various fabrication strategies. In this review, we summarize recent advances of structured MXene/polymer composites and their processing-structure-property relationships. Two main forms of MXene/polymer composites (films and foams) are separately discussed with a focus on the detailed fabrication means and corresponding structures. These architected composites complement those in which MXenes nanosheets are isotropically dispersed throughout, such as those formed by aqueous solution mixing approaches. This review culminates in a perspective on the future opportunities for architected MXene/polymer composites.more » « less
-
To date, major challenges (Ed.)
-
Although surface terminations (such as ═O, –Cl, –F, and –OH) on MXene nanosheets strongly influence their functional properties, synthesis of MXenes with desired types and distribution of those terminations is still challenging. Here, it is demonstrated that thermal annealing helps in removing much of the terminal groups of molten salt-etched multilayered (ML) Ti3C2Tz. In this study, the chloride terminations of molten salt-etched ML-Ti3C2Tz were removed via thermal annealing at increased temperatures under an inert (argon) atmosphere. This thermal annealing created some bare sites available for further functionalization of Ti3C2Tz. XRD, EDS, and XPS measurements confirm the removal of much of the terminal groups of ML-Ti3C2Tz. Here, the annealed ML-Ti3C2Tz was refunctionalized by −OH groups and 3-aminopropyl triethoxysilane (APTES), which was confirmed by FTIR. The −OH and APTES surface-modified ML-Ti3C2Tz are evaluated as a solid lubricant, exhibiting ∼70.1 and 66.7% reduction in friction compared to a steel substrate, respectively. This enhanced performance is attributed to the improved interaction or adhesion of functionalized ML-Ti3C2Tz with the substrate material. This approach allows for the effective surface modification of MXenes and control of their functional properties.more » « less
-
Radio-frequency (RF) heating of thermosetting epoxies is an agile method to decouple the extrudability of epoxy resins from their buildability for additive manufacturing. Through this method, the resin is extruded in the liquid state at the early stages of curing. Then, an RF applicator induces a rapid and uniform increase in temperature of the resin, accelerating the solidification of the printed feature. Understanding the evolution of the resin's RF heating response as it cures is therefore critical in meeting the demands of additive manufacturing. In this work, we show that the high-frequency dielectric loss, determined using in situ rheo-dielectric measurements, of both neat and carbon nanotube (CNT) filled resins is correlated to the heating response at different temperatures throughout curing. Furthermore, we show that the presence of CNTs within the resin augments the heating response and that their dispersion quality is critical to achieving rapid heating rates during the cure.more » « less
-
Solid–liquid composites (SLCs) combine the properties of solids and liquids, enhancing functionalities and expanding potential applications. Traditional methods for creating SLCs often face challenges such as low mass transfer efficiency, difficulty in controlling separation behavior, and substantial waste production. Herein, we report a new approach to solve these challenges by using disulfide-based responsive polymeric capsule shells to make liquid-filled monoliths for carbon capture. The capsules are prepared through interfacial polymerization and contain either non-polar poly(α-olefin)432 or highly polar 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([HMIM][TFSI]) at 74–82 wt%. Upon gentle heating, the dynamic disulfide bonds of the isolated capsules undergo bond exchange, leading to the fusion of capsule shells into free-standing monoliths that retain >89 wt% of their liquid core and remain stable for at least two weeks. These monoliths demonstrate CO2 absorption rates and capacities comparable to their capsule counterparts; further, in response to radiofrequency (RF), they reach the CO2 desorption temperature in only ∼31 s. This innovative system addresses the limitations of conventional SLC fabrication techniques, offering a versatile and practical approach to fusing polymer capsule shells for applications across separation, energy storage, and carbon capture applications.more » « less
-
Abstract Porous MXene-polymer composites have gained attention due to their low density, large surface area, and high electrical conductivity, which can be used in applications such as electromagnetic interference shielding, sensing, energy storage, and catalysis. High internal phase emulsions (HIPEs) can be used to template the synthesis of porous polymer structures, and when solid particles are used as the interfacial agent, composites with pores lined with the particles can be realized. Here, we report a simple and scalable method to prepare conductive porous MXene/polyacrylamide structures via polymerization of the continuous phase in oil/water HIPEs. The HIPEs are stabilized by salt flocculated Ti 3 C 2 T x nanosheets, without the use of a co-surfactant. After polymerization, the polyHIPE structure consists of porous polymer struts and pores lined with Ti 3 C 2 T x nanosheets, as confirmed by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The pore size can be tuned by varying the Ti 3 C 2 T x concentration, and the interconnected Ti 3 C 2 T x network allows for electrical percolation at low Ti 3 C 2 T x loading; further, the electrical conductivity is stable for months indicating that in these composites, the nanosheets are stable to oxidation at ambient conditions. The polyHIPEs also exhibit rapid radio frequency heating at low power (10 °C s −1 at 1 W). This work demonstrates a simple approach to accessing electrically conductive porous MXene/polymer composites with tunable pore morphology and good oxidation stability of the nanosheets.more » « less
-
Titanium carbide/reduced graphene oxide (Ti 3 C 2 T z /rGO) gels were prepared by a one-step hydrothermal process. The gels show a highly porous structure with a surface area of ∼224 m 2 g −1 and average pore diameter of ∼3.6 nm. The content of GO and Ti 3 C 2 T z nanosheets in the reaction precursor was varied to yield different microstructures. The supercapacitor performance of Ti 3 C 2 T z /rGO gels varied significantly with composition. Specific capacitance initially increased with increasing Ti 3 C 2 T z content, but at high Ti 3 C 2 T z content gels cannot be formed. Also, the retention of capacitance decreased with increasing Ti 3 C 2 T z content. Ti 3 C 2 T z /rGO gel electrodes exhibit enhanced supercapacitor properties with high potential window (1.5 V) and large specific capacitance (920 F g −1 ) in comparison to pure rGO and Ti 3 C 2 T z . The synergistic effect of EDLC from rGO and redox capacitance from Ti 3 C 2 T z was the reason for the enhanced supercapacitor performance. A symmetric two-electrode supercapacitor cell was constructed with Ti 3 C 2 T z /rGO, which showed very high areal capacitance (158 mF cm −2 ), large energy density (∼31.5 μW h cm −2 corresponding to a power density of ∼370 μW cm −2 ), and long stability (∼93% retention) after 10 000 cycles.more » « less
An official website of the United States government
