Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article presents a method of computing bound state potential curves and autoionizing curves using fixed-nuclei R-matrix data extracted from the Quantemol-N software suite. It is a method based on two related multichannel quantum-defect theory approaches. One is applying bound-state boundary conditions to closed-channel asymptotic solution matrices, and the other is searching for resonance positions via eigenphase shift analysis. We apply the method to the CH molecule to produce dense potential-curve datasets presented as graphs and supplied as tables in the publication supplement.more » « lessFree, publicly-accessible full text available December 14, 2024
-
ABSTRACT Cross-sections and rate coefficients for rovibronic excitation of the CH+ ion by electron impact and dissociative recombination of CH+ with electrons are evaluated using a theoretical approach combining an R-matrix method and molecular quantum defect theory. The method has been developed and tested, comparing the theoretical results with the data from the recent Cryogenic Storage Ring experiment. The obtained cross-sections and rate coefficients evaluated for temperatures from 1 to 10 000 K could be used for plasma modelling in the interpretation of astrophysical observations and also in the technological applications where the molecular hydrocarbon plasma is present.
-
The resonant profile of the rate coefficient for three-body recombination into a shallow dimer is investigated for mass-imbalanced systems. In the low-energy limit, three atoms collide with zero-range interactions, in a regime where the scattering lengths of the heavy–heavy and the heavy–light subsystems are positive and negative, respectively. For this physical system, the adiabatic hyperspherical representation is combined with a fully semi-classical method and we show that the shallow dimer recombination spectra display an asymmetric lineshape that originates from the coexistence of Efimov resonances with Stückelberg interference minima. These asymmetric lineshapes are quantified utilizing the Fano profile formula. In particular, a closed-form expression is derived that describes the width of the corresponding Efimov resonances and the Fano lineshape asymmetry parameter q. The profile of Efimov resonances exhibits a q-reversal effect as the inter- and intra-species scattering lengths vary. In the case of a diverging asymmetry parameter, i.e., |q|→∞, we show that the Efimov resonances possess zero width and are fully decoupled from the three-body and atom–dimer continua, and the corresponding Efimov metastable states behave as bound levels.more » « less