- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Biggs, Tyler (1)
-
Burns, Joshua J (1)
-
Feltus, F Alex (1)
-
Ficklin, Stephen P (1)
-
Greer, Mitchell S (1)
-
Hadish, John A (1)
-
McGowan, Matthew T (1)
-
Shealy, Benjamin T (1)
-
Smith, Melissa C (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& *Soto, E. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
- Filter by Editor
-
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. I. Sacristán, J. C. (0)
-
A. Weinberg, D. Moore-Russo (0)
-
A. Weinberger (0)
-
A.I. Sacristán, J.C. Cortés-Zavala (0)
-
A.I., Dimitrova (0)
-
ACS (0)
-
AIAA (0)
-
AIAA Propulsion and Energy 2021 (0)
-
AIAA SciTech (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations are false or incorrect. False and incorrect correlations canmore »Free, publicly-accessible full text available January 1, 2023