skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gregory, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To understand how behaviors arise in animals, it is necessary to investigate both the neural circuits and the biomechanics of the periphery. A tractable model system for studying multifunctional control is the feeding apparatus of the marine molluskAplysia californica. Previousin silicoandin robotomodels have investigated how the nervous and muscular systems interact in this system. However, these models are still limited in their ability to matchin vivodata both qualitatively and quantitatively. We introduce a new neuromechanical model ofAplysiafeeding that combines a modified version of a previously developed neural model with a novel biomechanical model that better reflects the anatomy and kinematics ofAplysiafeeding. The model was calibrated using a combination of previously measured biomechanical parameters and hand-tuning to behavioral data. Using this model, simulated feeding experiments were conducted, and the resulting behavioral metrics were compared to animal data. The model successfully produces three key behaviors seen inAplysiaand demonstrates a good quantitative agreement with biting and swallowing behaviors. Additional work is needed to match rejection behavior quantitatively and to reflect qualitative observations related to the relative contributions of two key muscles, the hinge and I3. Future improvements will focus on incorporating the effects of deformable 3D structures in the simulated buccal mass. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, , and the azimuthal wind velocity at that radius, . The corresponding cyclostrophic Coriolis parameter, /, far exceeds its planetary counterpart, , for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, . On the vortex periphery, merges with . In the classical Rankine vortex model, the inner region undergoes solid‐body rotation rendering constant. In a more realistic representation, is not constant, and the ensuing cyclostrophic ‐effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two‐dimensional anisotropic spectrum. An alternative description is provided by one‐dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to ), and zonostrophic (transverse spectrum amplitude is proportional to ). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic‐zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available December 17, 2025
  5. Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however. We used RNAi to reduce resilin deposition in the principal energy-storing springs of the desert locust (Schistocerca gregaria) before measuring jumping performance. Knockdown reduced the amount of resilin-associated fluorescence in the semilunar processes (SLPs) by 44% and reduced the cross-sectional area of the tendons of the hind leg extensor-tibiae muscle by 31%. This affected jumping in three ways: First, take-off velocity was reduced by 15% in knockdown animals, which could be explained by a change in the extrinsic stiffness of the extensor-tibiae tendon caused by the decrease in its cross-sectional area. Second, knockdown resulted in permanent breakages in the hind legs of 29% of knockdown locusts as tested by electrical stimulation of the extensor muscle, but none in controls. Third, knockdown locusts exhibited a greater decline in distance jumped when made to jump in rapid succession than did controls. We conclude that stiff cuticle acts as the principal elastic energy store for insect jumping, while resilin protects these more brittle structures against breakage from repeated use. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  6. Hydroxyapatite (HAP) exhibits a highly oriented hierarchical structure in biological hard tissues. The formation and selective crystalline orientation of HAP is a process that involves functional biomineralization proteins abundant in acidic residues. To obtain insights into the process of HAP mineralization and acidic residue binding, synthesized HAP with specific lattice planes including (001), (100), and (011) are structurally characterized following the adsorption of aspartic acid (Asp). The adsorption affinity of Asp on HAP surfaces is evaluated quantitatively and demonstrates a high dependency on the HAP morphological form. Among the synthesized HAP nanoparticles (NPs), Asp exhibits the strongest adsorption affinity to short HAP nanorods, which are composed of (100) and (011) lattice planes, followed by nanosheets with a preferential expression of the (001) facet, to which Asp displays a similar but slightly lower binding affinity. HAP nanowires, with the (100) lattice plane preferentially developed, show significantly lower affinity to Asp and evidence of multilayer adsorption compared to the previous two types of HAP NPs. A combination of solid-state NMR (SSNMR) techniques including 13C and 15N CP-MAS, relaxation measurements and 13C−31P Rotational Echo DOuble Resonance (REDOR) is utilized to characterize the molecular structure and dynamics of Asp-HAP bionano interfaces with 13C- and 15N-enriched Asp. REDOR is used to determine 13C−31P internuclear distances, providing insight into the Asp binding geometry where stronger 13C−31P dipolar couplings correlate with binding affinity determined from Langmuir isotherms. The carboxyl sites are identified as the primary binding groups, facilitated by their interaction with surface calcium sites. The Asp chelation conformations revealed by SSNMR are further refined with molecular dynamics (MD) simulation where specific models strongly agree between the SSNMR and MD models for the various surfaces. 
    more » « less
  7. Free, publicly-accessible full text available December 1, 2025
  8. Abstract There is increasing interest from evolutionary biologists in the evolution of avian bill shape, how the bill is used during feeding and, in particular, the bite forces the bill can deliver. Bite force exhibits isometry with the total mass of the jaw musculature, but there is variation in the functional categories of the jaw muscles in different avian taxa. Qualitative descriptions of the jaw musculature do not allow analysis of the relative contributions that adductor or retractor muscles play in generating a bite force. This study is a meta-analysis of published data for body mass and the mass of the jaw musculature in 66 bird species from 10 orders. The masses of the different muscles contributing to adduction and retraction in closing the jaw, and to depression and protraction in opening the jaw, were summed and allometric relationships explored before investigating the effects of taxonomic order on these relationships. The categories of muscles, and the masses of each category of jaw musculature varied among avian orders. Some species, such as the flightless ratites, had relatively small jaw muscle mass but parrots had an additional adductor muscle. Phylogenetically controlled relationships between body mass and the mass of each muscle category irrespective of taxonomic order were isometric. However, analysis of covariance revealed significant interactions between body mass and taxonomic order. Most orders had low values for body-mass-specific muscle masses in the jaw with the notable exceptions of the Passeriformes (songbirds) and Psittaciformes (parrots). The values of these orders were 3–4 times greater, although the relative amounts of muscles contributing to adduction and retraction were similar in Psittaciformes, but adduction was markedly higher in Passeriformes. The results of these analyses highlight the lack of species-specific data for most birds, which is adversely impacting our understanding of the anatomical features that are determining the functional properties of the bill during feeding. 
    more » « less
  9. Free, publicly-accessible full text available April 1, 2026
  10. Abstract The coordination of complex behavior requires knowledge of both neural dynamics and the mechanics of the periphery. The feeding system ofAplysia californicais an excellent model for investigating questions in soft body systems’ neuromechanics because of its experimental tractability. Prior work has attempted to elucidate the mechanical properties of the periphery by using a Hill-type muscle model to characterize the force generation capabilities of the key protractor muscle responsible for movingAplysia’s grasper anteriorly, the I2 muscle. However, the I1/I3 muscle, which is the main driver of retractions ofAplysia’s grasper, has not been characterized. Because of the importance of the musculature’s properties in generating functional behavior, understanding the properties of muscles like the I1/I3 complex may help to create more realistic simulations of the feeding behavior ofAplysia, which can aid in greater understanding of the neuromechanics of soft-bodied systems. To bridge this gap, in this work, the I1/I3 muscle complex was characterized using force-frequency, length-tension, and force-velocity experiments and showed that a Hill-type model can accurately predict its force-generation properties. Furthermore, the muscle’s peak isometric force and stiffness were found to exceed those of the I2 muscle, and these results were analyzed in the context of prior studies on the I1/I3 complex’s kinematics in vivo. 
    more » « less