Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present initial results from extremely well-resolved 3D magnetohydrodynamical simulations of idealized galaxy clusters, conducted using the AthenaPK code on the Frontier exascale supercomputer. These simulations explore the self-regulation of galaxy groups and cool-core clusters by cold gas-triggered active galactic nucleus (AGN) feedback incorporating magnetized kinetic jets. Our simulation campaign includes simulations of galaxy groups and clusters with a range of masses and intragroup and intracluster medium properties. In this paper, we present results that focus on a Perseus-like cluster. We find that the simulated clusters are self-regulating, with the cluster cores staying at a roughly constant thermodynamic state and AGN jet power staying at physically reasonable values (≃1044–1045erg s–1) for billions of years without a discernible duty cycle. These simulations also produce significant amounts of cold gas, with calculations having strong magnetic fields generally both promoting cold gas formation and allowing cold gas out to much larger cluster-centric radii (≃100 kpc) than simulations with weak or no fields (≃10 kpc), and also having more filamentary cold gas morphology. We find that AGN feedback significantly increases the strength of magnetic fields at the center of the cluster. We also find that the magnetized turbulence generated by the AGN results in turbulence where the velocity power spectra are tied to AGN activity, whereas the magnetic energy spectra are much less impacted after reaching a stationary state.more » « lessFree, publicly-accessible full text available July 21, 2026
-
Abstract Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like.more » « less
An official website of the United States government
