skip to main content

Search for: All records

Creators/Authors contains: "Greve, T. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the average rest-frame spectrum of the final catalog of dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope's SPT-SZ survey and measured with Band 3 of the Atacama Large Millimeter/submillimeter Array. This work builds on the previous average rest-frame spectrum, given in Spilker et al. (2014) for the first 22 sources, and is comprised of a total of 78 sources, normalized by their respective apparent dust masses. The spectrum spans 1.9 <z< 6.9 and covers rest-frame frequencies of 240–800 GHz. Combining this data with low-JCO observations from the Australia Telescope Compact Array, we detect multiple bright line features from12CO, [Ci], and H2O, as well as fainter molecular transitions from13CO, HCN, HCO+, HNC, CN, H2O+, and CH. We use these detections, along with limits from other molecules, to characterize the typical properties of the interstellar medium (ISM) for these high-redshift DSFGs. We are able to divide the large sample into subsets in order to explore how the average spectrum changes with various galaxy properties, such as effective dust temperature. We find that systems with hotter dust temperatures exhibit differences in the bright12CO emission lines, and contain either warmer and more excited dense gas tracers or larger dense gas reservoirs. These observations will serve as a reference point to studies of the ISM in distant luminous DSFGs (LIR> 1012L), and will inform studies of chemical evolution before the peak epoch of star formation atz= 2–3.

    more » « less
  2. Abstract

    We investigate the fine-structure [Cii] line at 158μm as a molecular gas tracer by analyzing the relationship between molecular gas mass (Mmol) and [Cii] line luminosity (L[CII]) in 11,125z≃ 6 star-forming, main-sequence galaxies from thesimbasimulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [Cii] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01)logL[CII]logMmolrelation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies atz≲ 6. We derive a median [Cii]-to-Mmolconversion factor ofα[CII]≃ 18M/L. This is lower than the average value of ≃30M/Lderived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [Cii] observations of low-mass galaxies. For our simulations, [Cii] is a better tracer of the molecular gas than COJ= 1–0, especially at the lowest metallicities, where much of the gas isCO-dark. We find thatL[CII]is more tightly correlated withMmolthan with star formation rate (SFR), and both thelogL[CII]logMmolandlogL[CII]logSFRrelations arise from the Kennicutt–Schmidt relation. Our findings suggest thatL[CII]is a promising tracer of the molecular gas at the earliest cosmic epochs.

    more » « less
  3. null (Ed.)
  4. ABSTRACT We present Atacama Compact Array and Atacama Pathfinder Experiment observations of the [N ii] 205 μm fine-structure line in 40 sub-millimetre galaxies lying at redshifts z = 3–6, drawn from the 2500 deg2 South Pole Telescope survey. This represents the largest uniformly selected sample of high-redshift [N ii] 205 μm measurements to date. 29 sources also have [C ii] 158 μm line observations allowing a characterization of the distribution of the [C ii] to [N ii] luminosity ratio for the first time at high redshift. The sample exhibits a median L$_{{\rm{[C\,{\small II}]}}}$/L$_{{\rm{[N\,{\small II}]}}}$ ≈ 11.0 and interquartile range of 5.0 –24.7. These ratios are similar to those observed in local (Ultra)luminous infrared galaxies (LIRGs), possibly indicating similarities in their interstellar medium. At the extremes, we find individual sub-millimetre galaxies with L$_{{\rm{[C\,{\small II}]}}}$/L$_{{\rm{[N\,{\small II}]}}}$ low enough to suggest a smaller contribution from neutral gas than ionized gas to the [C ii] flux and high enough to suggest strongly photon or X-ray region dominated flux. These results highlight a large range in this line luminosity ratio for sub-millimetre galaxies, which may be caused by variations in gas density, the relative abundances of carbon and nitrogen, ionization parameter, metallicity, and a variation in the fractional abundance of ionized and neutral interstellar medium. 
    more » « less
  5. Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS). 
    more » « less