Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Estimating the infection fatality rate (IFR) for emerging diseases is elusive due to the presence of asymptomatic or mildly symptomatic infections and variable testing capacity. IFR estimates are also affected by region-specific differences in sampling regimes, demographics, and healthcare resources. Methods: Here we present a novel regression approach using population testing and readily available case fatality rates (CFR) to estimate the IFR during an outbreak. The approach is based on few assumptions and can be used for a wide range of emerging diseases. We validate the use of the method using commonly reported COVID-19 testing data. Results: Our new statistical approach reveals a conservative global IFR of 0.90 % (CI: 0.70 %, 1.16 %) for COVID-19 across the 139 countries affected before May 2020. Deviation of countries’ reported CFR from the estimator did not correlate with demography, per capita GDP, or healthcare access and quality, suggesting variation is due to differing testing regimes or reporting guidelines by country. Conclusions: This method can be used retrospectively or for future disease outbreaks when other data are limited.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Rinaldi, Gabriel (Ed.)CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. Gene drive technology in mollusks has received little attention despite the role of freshwater snails as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A successful drive in snails must overcome self-fertilization, a common feature of host snails which could prevents a drive’s spread. Here we developed a novel population genetic model accounting for snails’ mixed mating and population dynamics, susceptibility to parasite infection regulated by multiple alleles, fitness differences between genotypes, and a range of drive characteristics. We integrated this model with an epidemiological model of schistosomiasis transmission to show that a snail population modification drive targeting immunity to infection can be hindered by a variety of biological and ecological factors; yet under a range of conditions, disease reduction achieved by chemotherapy treatment of the human population can be maintained with a drive. Alone a drive modifying snail immunity could achieve significant disease reduction in humans several years after release. These results indicate that gene drives, in coordination with existing public health measures, may become a useful tool to reduce schistosomiasis burden in selected transmission settings with effective CRISPR construct design and evaluation of the genetic and ecological landscape.more » « less
An official website of the United States government
