skip to main content


Search for: All records

Creators/Authors contains: "Griffin, Christopher T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Intraspecific variation in growth trajectories provides a fundamental source of variation upon which natural selection acts. Recent work hints that early dinosaurs possessed elevated levels of such variation compared to other archosaurs, but comprehensive data uniting body size, bone histology, and morphological variation from a stratigraphically constrained early dinosaur population are needed to test this hypothesis. The Triassic theropodCoelophysis bauri, known from a bonebed preserving a single population of coeval individuals, provides an exceptional system to assess whether highly variable growth patterns were present near the origin of Dinosauria. Twenty-four histologically sampled individuals were less than a year to at least four years old and confirm the right-skewed age distribution of theCoelophysisassemblage. Poor correlations among size, age, and morphological maturity strongly support the presence of unique, highly variable growth trajectories in early dinosaurs relative to coeval archosaurs and their living kin.

     
    more » « less
  2. The vertebrate lineages that would shape Mesozoic and Cenozoic terrestrial ecosystems originated across Triassic Pangaea1,2,3,4,5,6,7,8,9,10,11. By the Late Triassic (Carnian stage, ~235 million years ago), cosmopolitan ‘disaster faunas’ (refs. 12,13,14) had given way to highly endemic assemblages12,13 on the supercontinent. Testing the tempo and mode of the establishment of this endemism is challenging—there were few geographic barriers to dispersal across Pangaea during the Late Triassic. Instead, palaeolatitudinal climate belts, and not continental boundaries, are proposed to have controlled distribution15,16,17,18. During this time of high endemism, dinosaurs began to disperse and thus offer an opportunity to test the timing and drivers of this biogeographic pattern. Increased sampling can test this prediction: if dinosaurs initially dispersed under palaeolatitudinal-driven endemism, then an assemblage similar to those of South America4,19,20,21 and India19,22—including the earliest dinosaurs—should be present in Carnian deposits in south-central Africa. Here we report a new Carnian assemblage from Zimbabwe that includes Africa’s oldest definitive dinosaurs, including a nearly complete skeleton of the sauropodomorph Mbiresaurus raathi gen. et sp. nov. This assemblage resembles other dinosaur-bearing Carnian assemblages, suggesting that a similar vertebrate fauna ranged high-latitude austral Pangaea. The distribution of the first dinosaurs is correlated with palaeolatitude-linked climatic barriers, and dinosaurian dispersal to the rest of the supercontinent was delayed until these barriers relaxed, suggesting that climatic controls influenced the initial composition of the terrestrial faunas that persist to this day. 
    more » « less
  3. Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.

     
    more » « less
  4. ABSTRACT

    Mass extinctions change global ecosystems, and the end‐Triassic mass extinction was hypothesized to have precipitated the rise of dinosaur dominance, with dinosaurs filling resource zones of eliminated large‐bodied reptilian lineages. This replacement has been explicitly hypothesized for theropod dinosaurs, and the eastern North American theropod footprint record suggests an increase in maximum body size across the Triassic‐Jurassic boundary. Without taking ontogenetic stage in account, the maximum size of the rare large Triassic theropods worldwide supports this hypothesis, with the size of the largest individuals corresponding to the largest Triassic theropod tracks. However, both morphological data and histological examination suggest that known large‐bodied Triassic theropods are represented by immature individuals still growing rapidly at the time of death, indicating that the maximum body size of Triassic theropods was much larger than that a strict reading of the body fossil record would suggest. The size increase recorded in the sediments of eastern North America is not part of a global trend. Instead of a simple ecological replacement of non‐dinosaurian archosaurs by dinosaurs, the rise in theropod dinosaurian ecological dominance was an extended process across the end of the Late Triassic into the Jurassic. Anat Rec, 303:1158–1169, 2020. © 2019 Wiley Periodicals, Inc.

     
    more » « less