- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Griffin, Shannon R. (2)
-
Hirsa, Amir H. (2)
-
Lopez, Juan M. (2)
-
McMackin, Patrick M. (2)
-
Adam, Joe (1)
-
Adam, Joe A. (1)
-
Bonocora, Richard P. (1)
-
Brakke, Kenneth A. (1)
-
Debono, Nicholas E. (1)
-
Griffin, Shannon (1)
-
Gulati, Shreyash (1)
-
Hirsa, Amir (1)
-
McMackin, Patrick (1)
-
Raghunandan, Aditya (1)
-
Riley, Frank P. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
x (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fluid interfaces significantly influence the dynamics of protein solutions, effects that can be isolated by performing experiments in microgravity, greatly reducing the amount of solid boundaries present, allowing air-liquid interfaces to become dominant. This investigation examined the effects of protein concentration on interfacial shear-induced fibrillization of insulin in microgravity within a containerless biochemical reactor, the ring-sheared drop (RSD), aboard the international space station (ISS). Human insulin was used as a model amyloidogenic protein for studying protein kinetics with applications to in situ pharmaceutical production, tissue engineering, and diseases such as Alzheimer’s, Parkinson’s, infectious prions, and type 2 diabetes. Experiments investigated three main stages of amyloidogenesis: nucleation studied by seeding native solutions with fibril aggregates, fibrillization quantified using intrinsic fibrillization rate after fitting measured solution intensity to a sigmoidal function, and gelation observed by detection of solidification fronts. Results demonstrated that in surface-dominated amyloidogenic protein solutions: seeding with fibrils induces fibrillization of native protein, intrinsic fibrillization rate is independent of concentration, and that there is a minimum fibril concentration for gelation with gelation rate and rapidity of onset increasing monotonically with increasing protein concentration. These findings matched well with results of previous studies within ground-based analogs.more » « less
-
McMackin, Patrick M.; Griffin, Shannon R.; Riley, Frank P.; Gulati, Shreyash; Debono, Nicholas E.; Raghunandan, Aditya; Lopez, Juan M.; Hirsa, Amir H. (, npj Microgravity)
An official website of the United States government
