Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Version control systems typically rely on apatch language, heuristicpatch synthesis algorithmslike diff, andthree-way merge algorithms. Standard patch languages and merge algorithms often fail to identify conflicts correctly when there are multiple edits to one line of code or code is relocated. This paper introduces Grove, a collaborative structure editor calculus that eliminates patch synthesis and three-way merge algorithms entirely. Instead, patches are derived directly from the log of the developer’s edit actions and all edits commute, i.e. the repository state forms a commutative replicated data type (CmRDT). To handle conflicts that can arise due to code relocation, the core datatype in Grove is a labeled directed multi-graph with uniquely identified vertices and edges. All edits amount to edge insertion and deletion, with deletion being permanent. To support tree-based editing, we define a decomposition from graphs intogroves, which are a set of syntax trees with conflicts—including local, relocation, and unicyclic relocation conflicts—represented explicitly using holes and references between trees. Finally, we define a type error localization system for groves that enjoys atotalityproperty, i.e. all editor states in Grove are statically meaningful, so developers can use standard editor services while working to resolve these explicitly represented conflicts. The static semantics is defined as a bidirectional marking system in line with recent work, with gradual typing employed to handle situations where errors and conflicts prevent type determination. We then layer on a unification-based type inference system to opportunistically fill type holes and fail gracefully when no solution exists. We mechanize the metatheory of Grove using the Agda theorem prover. We implement these ideas as theGrove Workbench, which generates the necessary data structures and algorithms in OCaml given a syntax tree specification.more » « lessFree, publicly-accessible full text available January 7, 2026
-
Several modern programming systems, including GHC Haskell, Agda, Idris, and Hazel, supporttyped holes. Assigning static and, to varying degree, dynamic meaning to programs with holes allows program editors and other tools to offer meaningful feedback and assistance throughout editing, i.e. in alivemanner. Prior work, however, has considered only holes appearing in expressions and types. This paper considers, from type theoretic and logical first principles, the problem of typed pattern holes. We confront two main difficulties, (1) statically reasoning about exhaustiveness and irredundancy when patterns are not fully known, and (2) live evaluation of expressions containing both pattern and expression holes. In both cases, this requires reasoning conservatively about all possible hole fillings. We develop a typed lambda calculus, Peanut, where reasoning about exhaustiveness and redundancy is mapped to the problem of deriving first order entailments. We equip Peanut with an operational semantics in the style of Hazelnut Live that allows us to evaluate around holes in both expressions and patterns. We mechanize the metatheory of Peanut in Agda and formalize a procedure capable of deciding the necessary entailments. Finally, we scale up and implement these mechanisms within Hazel, a programming environment for a dialect of Elm that automatically inserts holes during editing to provide static and dynamic feedback to the programmer in a maximally live manner, i.e. for every possible editor state. Hazel is the first maximally live environment for a general-purpose functional language.more » « less
An official website of the United States government
