skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Groce, Brecklyn R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Frontal polymerization (FP) of epoxy monomers is typically achieved with a radical‐induced cationic frontal polymerization (RICFP) process that combines a thermal radical initiator with an onium salt superacid generator. In this paper, we show that both thermal and UV‐initiated cationic frontal polymerizations are possible for common epoxy and vinyl ether monomers with only an iodonium superacid generator in the absence of a standalone thermal radical initiator. Increasing superacid generator concentration resulted in an increase in front velocity, as did the addition of vinyl ether to epoxies. The front velocity is reduced by the addition of 4‐methoxyphenol (MeHQ), indicating free‐radicals play a significant role. 
    more » « less
  2. Abstract Formulations containing vinyl ethers and epoxy were successfully polymerized through a radical‐induced cationic frontal polymerization mechanism, using an iodonium salt superacid generator with a peroxide thermal radical initiator and fumed silica as a filler. It was found that an increase of vinyl ether content resulted in higher front velocities for divinyl ethers in formulations with trimethylolpropane triglycidyl ether. However, increased hydroxymonovinyl ether either decreased the front velocity or suppressed frontal polymerization. The kinetic effects of the superacid generator and thermal radical initiator with varying vinyl ether content were also studied. It was observed that increasing concentrations of initiators increased the front velocity, with the system exhibiting higher sensitivity to the superacid generator concentration. 
    more » « less