Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a new parametric lens model for the G165.7+67.0 galaxy cluster, which was discovered with Planck through its bright submillimeter flux, originating from a pair of extraordinary dusty star-forming galaxies (DSFGs) atz≈ 2.2. Using JWST and interferometric mm/radio observations, we characterize the intrinsic physical properties of the DSFGs, which are separated by only ∼1″ (8 kpc) and a velocity difference ΔV≲ 600 km s−1in the source plane, and thus are likely undergoing a major merger. Boasting intrinsic star formation rates SFRIR= 320 ± 70 and 400 ± 80M⊙yr−1, stellar masses of and 10.3 ± 0.1, and dust attenuations ofAV= 1.5 ± 0.3 and 1.2 ± 0.3, they are remarkably similar objects. We perform spatially resolved pixel-by-pixel spectral energy distribution (SED) fitting using rest-frame near-UV to near-IR imaging from JWST/NIRCam for both galaxies, resolving some stellar structures down to 100 pc scales. Based on their resolved specific star formation rates (SFRs) andUVJcolors, both DSFGs are experiencing significant galaxy-scale star formation events. If they are indeed interacting gravitationally, this strong starburst could be the hallmark of gas that has been disrupted by an initial close passage. In contrast, the host galaxy of SN H0pe has a much lower SFR than the DSFGs, and we present evidence for the onset of inside-out quenching and large column densities of dust even in regions of low specific SFR. Based on the intrinsic SFRs of the DSFGs inferred from UV through far-infrared SED modeling, this pair of objects alone is predicted to yield an observable 1.1 ± 0.2 core-collapse supernovae per year, making this cluster field ripe for continued monitoring.more » « lessFree, publicly-accessible full text available September 1, 2025
-
Abstract The Prime Extragalactic Areas for Reionization and Lensing Science, a James Webb Space Telescope (JWST) GTO program, obtained a set of unique NIRCam observations that have enabled us to significantly improve the default photometric calibration across both NIRCam modules. The observations consisted of three epochs of 4-band (F150W, F200W, F356W, and F444W) NIRCam imaging in the Spitzer IRAC Dark Field (IDF). The three epochs were six months apart and spanned the full duration of Cycle 1. As the IDF is in the JWST continuous viewing zone, we were able to design the observations such that the two modules of NIRCam, modules A and B, were flipped by 180° and completely overlapped each other’s footprints in alternate epochs. We were therefore able to directly compare the photometry of the same objects observed with different modules and detectors, and we found significant photometric residuals up to ∼0.05 mag in some detectors and filters, for the default version of the calibration files that we used (jwst_1039.pmap). Moreover, there are multiplicative gradients present in the data obtained in the two long-wavelength bands. The problem is less severe in the data reduced using the latest pmap (jwst_1130.pmapas of 2023 September), but it is still present, and is non-negligible. We provide a recipe to correct for this systematic effect to bring the two modules onto a more consistent calibration, to a photometric precision better than ∼0.02 mag.more » « less
-
Abstract “Changing-look” active galactic nuclei (CL-AGNs) challenge our basic ideas about the physics of accretion flows and circumnuclear gas around supermassive black holes. Using first-year Sloan Digital Sky Survey V (SDSS-V) repeated spectroscopy of nearly 29,000 previously known active galactic nuclei (AGNs), combined with dedicated follow-up spectroscopy, and publicly available optical light curves, we have identified 116 CL-AGNs where (at least) one broad emission line has essentially (dis-)appeared, as well as 88 other extremely variable systems. Our CL-AGN sample, with 107 newly identified cases, is the largest reported to date, and includes ∼0.4% of the AGNs reobserved in first-year SDSS-V operations. Among our CL-AGNs, 67% exhibit dimming while 33% exhibit brightening. Our sample probes extreme AGN spectral variability on months to decades timescales, including some cases of recurring transitions on surprisingly short timescales (≲2 months in the rest frame). We find that CL events are preferentially found in lower-Eddington-ratio (fEdd) systems: Our CL-AGNs have afEdddistribution that significantly differs from that of a carefully constructed, redshift- and luminosity-matched control sample (Anderson–Darling test yieldingpAD≈ 6 × 10−5; medianfEdd≈ 0.025 versus 0.043). This preference for lowfEddstrengthens previous findings of higher CL-AGN incidence at lowerfEdd, found in smaller samples. Finally, we show that the broad Mgiiemission line in our CL-AGN sample tends to vary significantly less than the broad Hβemission line. Our large CL-AGN sample demonstrates the advantages and challenges in using multi-epoch spectroscopy from large surveys to study extreme AGN variability and physics.more » « less
-
Direct-collapse black holes (DCBHs) of mass ∼104 − 105 M⊙that form in HI-cooling halos in the early Universe are promising progenitors of the ≳109 M⊙supermassive black holes that fuel observedz ≳ 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up toz ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈1 − 5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼29 AB mag. We identify two objects with spectral energy distributions consistent with theoretical DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of ≲5 × 10−4comoving Mpc−3(cMpc−3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the theoretical models atz ≈ 6 − 14.more » « less
-
Abstract With its unprecedented sensitivity and spatial resolution, the James Webb Space Telescope (JWST) has opened a new window for time-domain discoveries in the infrared. Here we report observations in the only field that has received four epochs (spanning 126 days) of JWST NIRCam observations in Cycle 1. This field is toward MACS J0416.1−2403, which is a rich galaxy cluster at redshiftz= 0.4 and is one of the Hubble Frontier Fields. We have discovered 14 transients from these data. Twelve of these transients happened in three galaxies (withz= 0.94, 1.01, and 2.091) crossing a lensing caustic of the cluster, and these transients are highly magnified by gravitational lensing. These 12 transients are likely of a similar nature to those previously reported based on the Hubble Space Telescope (HST) data in this field, i.e., individual stars in the highly magnified arcs. However, these 12 could not have been found by HST because they were too red and too faint. The other two transients are associated with background galaxies (z= 2.205 and 0.7093) that are only moderately magnified, and they are likely supernovae. They indicate a demagnified supernova surface density, when monitored at a time cadence of a few months to a ∼3–4μm survey limit of AB ∼28.5 mag, of ∼0.5 arcmin−2integrated toz≈ 2. This survey depth is beyond the capability of HST but can be easily reached by JWST.more » « less
-
Abstract The 3D geometries of high-redshift galaxies remain poorly understood. We build a differentiable Bayesian model and use Hamiltonian Monte Carlo to efficiently and robustly infer the 3D shapes of star-forming galaxies in James Webb Space Telescope Cosmic Evolution Early Release Science observations with atz= 0.5–8.0. We reproduce previous results from the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey in a fraction of the computing time and constrain the mean ellipticity, triaxiality, size, and covariances with samples as small as ∼50 galaxies. We find high 3D ellipticities for all mass–redshift bins, suggesting oblate (disky) or prolate (elongated) geometries. We break that degeneracy by constraining the mean triaxiality to be ∼1 for dwarfs atz> 1 (favoring the prolate scenario), with significantly lower triaxialities for higher masses and lower redshifts indicating the emergence of disks. The prolate population traces out a “banana” in the projected diagram with an excess of low-b/a, large- galaxies. The dwarf prolate fraction rises from ∼25% atz= 0.5–1.0 to ∼50%–80% atz= 3–8. Our results imply a second kind of disk settling from oval (triaxial) to more circular (axisymmetric) shapes with time. We simultaneously constrain the 3D size–mass relation and its dependence on 3D geometry. High-probability prolate and oblate candidates show remarkably similar Sérsic indices (n∼ 1), nonparametric morphological properties, and specific star formation rates. Both tend to be visually classified as disks or irregular, but edge-on oblate candidates show more dust attenuation. We discuss selection effects, follow-up prospects, and theoretical implications.more » « less
-
Abstract We derive the spatial and wavelength behavior of dust attenuation in the multiple-armed spiral galaxy VV 191b using backlighting by the superimposed elliptical system VV 191a in a pair with an exceptionally favorable geometry for this measurement. Imaging using the James Webb Space Telescope and Hubble Space Telescope spans the wavelength range 0.3–4.5μm with high angular resolution, tracing the dust in detail from 0.6–1.5μm. Distinct dust lanes continue well beyond the bright spiral arms, and trace a complex web, with a very sharp radial cutoff near 1.7 Petrosian radii. We present attenuation profiles and coverage statistics in each band at radii 14–21 kpc. We derive the attenuation law with wavelength; the data both within and between the dust lanes clearly favor a stronger reddening behavior (R=AV/EB−V≈ 2.0 between 0.6 and 0.9μm, approaching unity by 1.5μm) than found for starbursts and star-forming regions of galaxies. Power-law extinction behavior ∝λ−βgivesβ= 2.1 from 0.6–0.9μm.Rdecreases at increasing wavelengths (R≈ 1.1 between 0.9 and 1.5μm), whileβsteepens to 2.5. Mixing regions of different column density flattens the wavelength behavior, so these results suggest a different grain population than in our vicinity. The NIRCam images reveal a lens arc and counterimage from a background galaxy atz≈ 1, spanning 90° azimuthally at 2.″8 from the foreground elliptical-galaxy nucleus, and an additional weakly lensed galaxy. The lens model and imaging data give a mass/light ratioM/LB= 7.6 in solar units within the Einstein radius 2.0 kpc.more » « less
-
Abstract We report the discovery of a new “changing-look” active galactic nucleus (CLAGN) event, in the quasar SDSS J162829.17+432948.5 at z = 0.2603, identified through repeat spectroscopy from the fifth Sloan Digital Sky Survey (SDSS-V). Optical photometry taken during 2020–2021 shows a dramatic dimming of Δ g ≈ 1 mag, followed by a rapid recovery on a timescale of several months, with the ≲2 month period of rebrightening captured in new SDSS-V and Las Cumbres Observatory spectroscopy. This is one of the fastest CLAGN transitions observed to date. Archival observations suggest that the object experienced a much more gradual dimming over the period of 2011–2013. Our spectroscopy shows that the photometric changes were accompanied by dramatic variations in the quasar-like continuum and broad-line emission. The excellent agreement between the pre- and postdip photometric and spectroscopic appearances of the source, as well as the fact that the dimmest spectra can be reproduced by applying a single extinction law to the brighter spectral states, favor a variable line-of-sight obscuration as the driver of the observed transitions. Such an interpretation faces several theoretical challenges, and thus an alternative accretion-driven scenario cannot be excluded. The recent events observed in this quasar highlight the importance of spectroscopic monitoring of large active galactic nucleus samples on weeks-to-months timescales, which the SDSS-V is designed to achieve.more » « less
-
Abstract Using the first epoch of four-band NIRCam observations obtained by the James Webb Space Telescope (JWST) Prime Extragalactic Areas for Reionization and Lensing Science Program in the Spitzer IRAC Dark Field, we search for F150W and F200W dropouts. In 14.2 arcmin2, we have found eight F150W dropouts and eight F200W dropouts, all brighter than 27.5 mag (the brightest being ∼24 mag) in the band to the red side of the break. As they are detected in multiple bands, these must be real objects. Their nature, however, is unclear, and characterizing their properties is important for realizing the full potential of JWST. If the observed color decrements are due to the Lyman break, these objects should be atz≳ 11.7 andz≳ 15.4, respectively. The color diagnostics show that at least four F150W dropouts are far away from the usual contaminators encountered in dropout searches (red galaxies at much lower redshifts or brown dwarf stars). While the diagnostics of the F200W dropouts are less certain due to the limited number of passbands, at least one of them is likely not a known type of contaminant, and the rest are consistent with either high-redshift galaxies with evolved stellar populations or old galaxies atz≈ 3–8. If a significant fraction of our dropouts are indeed atz≳ 12, we have to face the severe problem of explaining their high luminosities and number densities. Spectroscopic identifications of such objects are urgently needed.more » « less
-
Abstract We report the discovery of an accreting supermassive black hole atz= 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα-break galaxy by Hubble with a Lyαredshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβline is best fit by a narrow plus a broad component, where the latter is measured at 2.5σwith an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (MBH/M⊙) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μm photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M⊙∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 M⊙yr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z/Z⊙∼ 0.1), dense (ne∼ 103cm−3), and highly ionized (logU∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object.more » « less