Adaptation across environmental gradients has been demonstrated in numerous systems with extensive dispersal, despite high gene flow and consequently low genetic structure. The speed and mechanisms by which such adaptation occurs remain poorly resolved, but are critical to understanding species spread and persistence in a changing world. Here, we investigate these mechanisms in the European green crab
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Carcinus maenas , a globally distributed invader. We focus on a northwestern Pacific population that spread across >12 degrees of latitude in 10 years from a single source, following its introduction <35 years ago. Using six locations spanning >1500 km, we examine genetic structure using 9376 single nucleotide polymorphisms (SNPs). We find high connectivity among five locations, with significant structure between these locations and an enclosed lagoon with limited connectivity to the coast. Among the five highly connected locations, the only structure observed was a cline driven by a handful of SNPs strongly associated with latitude and winter temperature. These SNPs are almost exclusively found in a large cluster of genes in strong linkage disequilibrium that was previously identified as a candidate for cold tolerance adaptation in this species. This region may represent a balanced polymorphism that evolved to promote rapid adaptation in variable environments despite high gene flow, and which now contributes to successful invasion and spread in a novel environment. This research suggests an answer to the paradox of genetically depauperate yet successful invaders: populations may be able to adapt via a few variants of large effect despite low overall diversity. -
Abstract Extreme climate events, such as drought, are becoming increasingly important drivers of plant community change, yet little is known about their impacts on invasive plants. Further, drought impacts may be altered by other anthropogenic stressors, such as eutrophication. We found drought dramatically reduced density of invasive
Lepidium latifolium in salt marshes, and this die‐back was mitigated by nutrient addition. In a 3‐yr field experiment (2014–2016) conducted during an unprecedented drought (2012–2015), we tracked the effects of drought and nutrient addition on the plant community. We conducted this research at four salt marshes across a salinity gradient in the San Francisco Bay, California, USA. We manipulated paired native and invaded plots, one‐half of which were treated monthly with N and P for 1.5 yr during the most intense period of the drought and one subsequent wet winter. In addition, we monitored unmanipulatedL. latifolium‐ invaded transects within our freshest and most saline sites throughout the three years of our manipulative experiment and one additional wet winter. We documented a dramatic die‐back of invasiveL. latifolium during extreme drought, with reductions in stem density (52–100%) and height (17–47%) that were more severe at low salinity sites than high salinity sites. We found nutrient application lessened the effect of drought onL. latifolium stem density, but not height. In native plots, extreme drought reduced native plant cover (4–24%), but nutrient addition mitigated this impact. Interestingly, native plants in invaded plots did not suffer reductions in cover due to drought, perhaps because they were simultaneously benefiting from the die‐back of the invader. Our results show drought negatively impacted both native and invasive plants and this impact was stronger on the invader, which experienced persistent declines two years after the end of the drought. However, by mitigating the effect of drought on invasive plants, nutrient addition potentially erased the advantage drought provided native plants over invasive plants under ambient nutrient conditions. -
Abstract We describe the range expansion and first occurrence of the subtropical crab
Portunus xantusii (Stimpson, 1860) in northern California during 2016 and link the range expansion to the regional extreme water temperature event during this time. We collectedP. xantusii occurrence data from crab trapping surveys conducted along the California coast as well as incidental observations by fishermen and SCUBA divers. We then analyzed 10 years of regional offshore temperature patterns using National Data Buoy Center data around the trapping region. We also examined evidence of northern California warm water refugia using sensors monitoring Tomales Bay, Elkhorn Slough, and San Francisco Bay. We found thatP. xantusii was present in every major estuary north of Monterey Bay and as far north as Tomales Bay and that the documented range expansion was likely due to the unusual oceanographic event that occurred northern California during this time period. Mean offshore temperatures and mean nearshore temperatures during 2014–2016 were about 2°C (one standard deviation) higher than the 2006–2013 mean, with extreme temperatures reaching three standard deviations above the 2006–2013 mean. We suggest that this unusual warm water event permitted survival of dispersing larvae ofP. xantusii larvae northward via coastal currents, and that the extended warm water period allowedP. xantusii to complete its development. Long‐term crab trapping programs in place since 1994 within this region provide robust support for the absence ofP. xantusii prior to 2016. Temperature data indicate that the estuaries in which adultP. xantusii was found could allow persistence of adultP. xantusii in northern California. -
Abstract Aim Mesophotic ecosystems, found at the limit of light penetration in the ocean, are rich in biodiversity and harbour unique ecological communities. However, they remain among the least studied habitat zones on earth due to the high costs and technological limitations. Here, we characterize mesophotic communities in two marine reserves across a range of habitat types, depths and temperatures using submersible technologies, with the goal of understanding the processes that structure these communities across biogeographical regions.
Location The Bay of La Paz and the Revillagigedo Archipelago, Mexico.
Taxa Fish and algal species.
Methods We used a small and inexpensive remotely operated vehicle (ROV) to conduct roving‐swim surveys of major habitat types in depths from 12 to 94 m. With the resulting binary data on the presence of fish species, we used generalized linear mixed models and canonical correspondence analysis to determine whether biogenic habitat, depth and/or temperature best explained species richness and community structure across reef and non‐reef substrate.
Results We identified 72 species or genera, including new depth records for nine fish species and a new geographical record for one fish species. Our surveys included large undocumented rhodolith beds (free‐living coralline algae) and mesophotic algal communities, in addition to diverse communities of soft corals and sponges. Fish species richness was positively associated with rocky substrate and warmer water, and reef fish communities differed significantly by depth, temperature and biogenic habitat.
Main conclusion Our results highlight the importance of biogenic habitat in structuring communities across gradients of depth and temperature. We also demonstrate the effectiveness of a small and economical ROV for conducting mesophotic surveys in remote regions. Our methods and results provide a framework that can be used to greatly increase the biogeographical and taxonomic scope of mesophotic research, especially for readily identifiable taxa such as fish.