In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuO
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gao, Dunfeng (2)
-
Grosse, Philipp (2)
-
Mistry, Hemma (2)
-
Roldan Cuenya, Beatriz (2)
-
Scholten, Fabian (2)
-
Sinev, Ilya (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract x species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuIspecies under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity. -
Grosse, Philipp ; Gao, Dunfeng ; Scholten, Fabian ; Sinev, Ilya ; Mistry, Hemma ; Roldan Cuenya, Beatriz ( , Angewandte Chemie)
Abstract In situ and operando spectroscopic and microscopic methods were used to gain insight into the correlation between the structure, chemical state, and reactivity of size‐ and shape‐controlled ligand‐free Cu nanocubes during CO2electroreduction (CO2RR). Dynamic changes in the morphology and composition of Cu cubes supported on carbon were monitored under potential control through electrochemical atomic force microscopy, X‐ray absorption fine‐structure spectroscopy and X‐ray photoelectron spectroscopy. Under reaction conditions, the roughening of the nanocube surface, disappearance of the (100) facets, formation of pores, loss of Cu and reduction of CuO
x species observed were found to lead to a suppression of the selectivity for multi‐carbon products (i.e. C2H4and ethanol) versus CH4. A comparison with Cu cubes supported on Cu foils revealed an enhanced morphological stability and persistence of CuIspecies under CO2RR in the former samples. Both factors are held responsible for the higher C2/C1product ratio observed for the Cu cubes/Cu as compared to Cu cubes/C. Our findings highlight the importance of the structure of the active nanocatalyst but also its interaction with the underlying substrate in CO2RR selectivity.