skip to main content


Search for: All records

Creators/Authors contains: "Grover, I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intelligent tutoring systems (ITS) provide educational benefits through one-on-one tutoring by assessing children’s existing knowledge and providing tailored educational content. In the domain of language acquisition, several studies have shown that children often learn new words by forming semantic relationships with words they already know. In this paper, we present a model that uses word semantics (semantics-based model) to make inferences about a child’s vocabulary from partial information about their existing vocabulary knowledge. We show that the proposed semantics-based model outperforms models that do not use word semantics (semantics-free models) on average. A subject-level analysis of results reveals that different models perform well for different children, thus motivating the need to combine predictions. To this end, we use two methods to combine predictions from semantics-based and semantics-free models and show that these methods yield better predictions of a child’s vocabulary knowledge. Our results motivate the use of semantics-based models to assess children’s vocabulary knowledge and build ITS that maximizes children’s semantic understanding of words. 
    more » « less
  2. Personalized education technologies capable of delivering adaptive interventions could play an important role in addressing the needs of diverse young learners at a critical time of school readiness. We present an innovative personalized social robot learning companion system that utilizes children’s verbal and nonverbal affective cues to modulate their engagement and maximize their long-term learning gains. We propose an affective reinforcement learning approach to train a personalized policy for each student during an educational activity where a child and a robot tell stories to each other. Using the personalized policy, the robot selects stories that are optimized for each child’s engagement and linguistic skill progression. We recruited 67 bilingual and English language learners between the ages of 4–6 years old to participate in a between-subjects study to evaluate our system. Over a three-month deployment in schools, a unique storytelling policy was trained to deliver a personalized story curriculum for each child in the Personalized group. We compared their engagement and learning outcomes to a Non-personalized group with a fixed curriculum robot, and a baseline group that had no robot intervention. In the Personalization condition, our results show that the affective policy successfully personalized to each child to boost their engagement and outcomes with respect to learning and retaining more target words as well as using more target syntax structures as compared to children in the other groups. 
    more » « less