skip to main content

Search for: All records

Creators/Authors contains: "Grover, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hmelo-Silver, C. E. (Ed.)
    This paper develops a systematic approach to identifying and analyzing high school students’ debugging strategies when they work together to construct computational models of scientific processes in a block-based programming environment. We combine Markov models derived from students’ activity logs with epistemic network analysis of their collaborative discourse to interpret and analyze their model building and debugging processes. We present a contrasting case study that illustrates the differences in debugging strategies between two groups of students and its impact on their model-building effectiveness.
  2. Free, publicly-accessible full text available September 28, 2022
  3. The benefits of computational model building in STEM domains are well documented yet the synergistic learning processes that lead to the effective learning gains are not fully understood. In this paper, we analyze the discussions between students working collaboratively to build computational models to solve physics problems. From this collaborative discourse, we identify strategies that impact their model building and learning processes.
  4. Introducing computational modeling into STEM classrooms can provide opportunities for the simultaneous learning of computational thinking (CT) and STEM. This paper describes the C2STEM modeling environment for learning physics, and the processes students can apply to their learning and modeling tasks. We use an unsupervised learning method to characterize student learning behaviors and how these behaviors relate to learning gains in STEM and CT.
  5. The introduction of computational modeling into science curricula has been shown to benefit students’ learning, however the synergistic learning processes that contribute to these benefits are not fully understood. We study students’ synergistic learning of physics and computational thinking (CT) through their actions and collaborative discourse as they develop computational models in a visual block-structured environment. We adopt a case study approach to analyze students synergistic learning processes related to stopping conditions, initialization, and debugging episodes. Our findings show a pattern of evolving sophistication in synergistic reasoning for model-building activities.
  6. Computational modeling has been shown to benefit integrated learning of science and computational thinking (CT), however the mechanics of this synergistic learning are not well understood. In this research, we examine discourse during collaborative computational model building through the lens of a collaborative problem solving framework to gain insights into collaboration and synergistic learning of high school physics and CT. We pilot our novel approach in the context of C2STEM, a designed modeling environment, and examine collaboration and synergistic learning episodes in a video capture of a dyad modeling 2D motion with constant velocities. Our findings exhibit the promise ofmore »our approach and lay the foundation for guiding future automated approaches to detecting the synergistic learning of science and CT.« less
  7. Synergistic learning of computational thinking (CT) and STEM has proven to effective in helping students develop better understanding of STEM topics, while simultaneously acquiring CT concepts and practices. With the ubiquity of computational devices and tools, advances in technology,and the globalization of product development, it is important for our students to not only develop multi-disciplinary skills acquired through such synergistic learning opportunities, but to also acquire key collaborative learning and problem-solving skills. In this paper, we describe the design and implementation of a collaborative learning-by-modeling environment developed for high school physics classrooms. We develop systematic rubrics and discuss the resultsmore »of key evaluation schemes to analyze collaborative synergistic learning of physics and CT concepts and practices.« less
  8. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the fieldmore »of STEM and CT integration.« less
  9. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the fieldmore »of STEM and CT integration.« less