skip to main content


Search for: All records

Creators/Authors contains: "Grozinger, Christina M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halts and the worker bees live several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having larger fat bodies, high expression levels of vitellogenin (a longevity, nutrition, and immune-related gene), and larger provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory suggests is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in the fall (i.e., lower brood area). We examine that theory here by assessing nurse bee physiology in both the summer and fall, in colonies with varying levels of brood. We find that season is a better predictor of nurse bee physiology than brood area. This finding suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival.

     
    more » « less
  2. Abstract

    Pollinators are an essential component of terrestrial food webs and agricultural systems but are threatened by insufficient access to floral resources. Managed honey bees, as generalist foragers that hoard nectar as honey, can act as bioindicators of floral resources available to pollinators in a given landscape through their accumulation of honey. Honey yields across the United States have decreased appreciably since the 1990s, concurrent with shifts in climate, land-use, and large-scale pesticide application. While many factors can affect honey accumulation, this suggests that anthropogenic stressors may be having large-scale impacts on the floral resources that pollinators depend on for their nutrition. We used hierarchical partitioning on five decades of state-level data to parse the most important environmental factors and likely mechanisms associated with spatial and temporal variation in honey yields across the US. Climatic conditions and soil productivity were among the most important variables for estimating honey yields, with states in warm or cool regions with productive soils having the highest honey yields per colony. These findings suggest that foundational factors constrain pollinator habitat suitability and define ecoregions of low or high honey production. The most important temporally varying factors were change in herbicide use, land use (i.e. increase in intensive agriculture and reduction in land conservation programs that support pollinators) and annual weather anomalies. This study provides insights into the interplay between broad abiotic conditions and fine temporal variation on habitat suitability for honey bees and other pollinators. Our results also provide a baseline for investigating how these factors influence floral resource availability, which is essential to developing strategies for resilient plant–pollinator communities in the face of global change.

     
    more » « less
  3. Understanding the ecological and evolutionary processes that drive host–pathogen interactions is critical for combating epidemics and conserving species. TheVarroa destructormite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despiteVarroainfestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host–pathogen interactions in honeybees.

     
    more » « less
    Free, publicly-accessible full text available October 25, 2024
  4. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  5. Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat – bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  6. Abstract

    Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors – such as aggression – have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species.

     
    more » « less
  7. Abstract

    Wild and managed pollinators are essential to food production and the function of natural ecosystems; however, their populations are threatened by multiple stressors including pesticide use. Because pollinator species can travel hundreds to thousands of meters to forage, recent research has stressed the importance of evaluating pollinator decline at the landscape scale. However, scientists’ and conservationists’ ability to do this has been limited by a lack of accessible data on pesticide use at relevant spatial scales and in toxicological units meaningful to pollinators. Here, we synthesize information from several large, publicly available datasets on pesticide use patterns, land use, and toxicity to generate novel datasets describing pesticide use by active ingredient (kg, 1997–2017) and aggregate insecticide load (kg and honey bee lethal doses, 1997–2014) for state-crop combinations in the contiguous U.S. Furthermore, by linking pesticide datasets with land-use data, we describe a method to map pesticide indicators at spatial scales relevant to pollinator research and conservation.

     
    more » « less
  8. Abstract

    Different genes show different levels of expression variability. For example, highly expressed genes tend to exhibit less expression variability. Genes whose promoters have TATA box and initiator motifs tend to have increased expression variability. On the other hand, DNA methylation of transcriptional units, or gene body DNA methylation, is associated with reduced gene expression variability in many species. Interestingly, some insect lineages, most notably Diptera including the canonical model insect Drosophila melanogaster, have lost DNA methylation. Therefore, it is of interest to determine whether genomic features similarly influence gene expression variability in lineages with and without DNA methylation. We analyzed recently generated large-scale data sets in D. melanogaster and honey bee (Apis mellifera) to investigate these questions. Our analysis shows that increased gene expression levels are consistently associated with reduced expression variability in both species, while the presence of TATA box is consistently associated with increased gene expression variability. In contrast, initiator motifs and gene lengths have weak effects limited to some data sets. Importantly, we show that a sequence characteristics indicative of gene body DNA methylation is strongly and negatively associate with gene expression variability in honey bees, while it shows no such association in D. melanogaster. These results suggest the evolutionary loss of DNA methylation in some insect lineages has reshaped the molecular mechanisms concerning the regulation of gene expression variability.

     
    more » « less