Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Simsekler, Mecit Can (Ed.)Missing data presents a challenge for machine learning applications specifically when utilizing electronic health records to develop clinical decision support systems. The lack of these values is due in part to the complex nature of clinical data in which the content is personalized to each patient. Several methods have been developed to handle this issue, such as imputation or complete case analysis, but their limitations restrict the solidity of findings. However, recent studies have explored how using some features as fully available privileged information can increase model performance including in SVM. Building on this insight, we propose a computationally efficient kernel SVM-based framework ( l 2 -SVMp+) that leverages partially available privileged information to guide model construction. Our experiments validated the superiority of l 2 -SVMp+ over common approaches for handling missingness and previous implementations of SVMp+ in both digit recognition, disease classification and patient readmission prediction tasks. The performance improves as the percentage of available privileged information increases. Our results showcase the capability of l 2 -SVMp+ to handle incomplete but important features in real-world medical applications, surpassing traditional SVMs that lack privileged information. Additionally, l 2 -SVMp+ achieves comparable or superior model performance compared to imputed privileged features.more » « less
- 
            Over the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinear setting. We propose a novel method for multilinear discriminant analysis that is radically different from the ones considered so far, and it is the first extension to tensors of quadratic discriminant analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We extensively test our method on a variety of synthetic data, outperforming previously proposed MDA techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string, and use our method to classify healthy signals versus unhealthy ones; our method outperforms state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our approach reached an AUC of 0.95(0.03) on clean signals—where the second best method reached 0.91(0.03)—and an AUC of 0.89(0.03) after adding noise to the signals (with a signal-to-noise-ratio of −30)—where the second best method reached 0.85(0.05). Our approach is fundamentally different than previous work in this direction, and proves to be faster, more stable, and more accurate on the tests we performed.more » « less
- 
            null (Ed.)Abstract Background This study outlines an image processing algorithm for accurate and consistent lung segmentation in chest radiographs of critically ill adults and children typically obscured by medical equipment. In particular, this work focuses on applications in analysis of acute respiratory distress syndrome – a critical illness with a mortality rate of 40% that affects 200,000 patients in the United States and 3 million globally each year. Methods Chest radiographs were obtained from critically ill adults (n = 100), adults diagnosed with acute respiratory distress syndrome (ARDS) (n = 25), and children (n = 100) hospitalized at Michigan Medicine. Physicians annotated the lung field of each radiograph to establish the ground truth. A Total Variation-based Active Contour (TVAC) lung segmentation algorithm was developed and compared to multiple state-of-the-art methods including a deep learning model (U-Net), a random walker algorithm, and an active spline model, using the Sørensen–Dice coefficient to measure segmentation accuracy. Results The TVAC algorithm accurately segmented lung fields in all patients in the study. For the adult cohort, an averaged Dice coefficient of 0.86 ±0.04 (min: 0.76) was reported for TVAC, 0.89 ±0.12 (min: 0.01) for U-Net, 0.74 ±0.19 (min: 0.15) for the random walker algorithm, and 0.64 ±0.17 (min: 0.20) for the active spline model. For the pediatric cohort, a Dice coefficient of 0.85 ±0.04 (min: 0.75) was reported for TVAC, 0.87 ±0.09 (min: 0.56) for U-Net, 0.67 ±0.18 (min: 0.18) for the random walker algorithm, and 0.61 ±0.18 (min: 0.18) for the active spline model. Conclusion The proposed algorithm demonstrates the most consistent performance of all segmentation methods tested. These results suggest that TVAC can accurately identify lung fields in chest radiographs in critically ill adults and children.more » « less
- 
            Acute respiratory distress syndrome (ARDS) is a fulminant inflammatory lung injury that develops in patients with critical illnesses, affecting 200,000 patients in the United States annually. However, a recent study suggests that most patients with ARDS are diagnosed late or missed completely and fail to receive life-saving treatments. This is primarily due to the dependency of current diagnosis criteria on chest x-ray, which is not necessarily available at the time of diagnosis. In machine learning, such an information is known as Privileged Information - information that is available at training but not at testing. However, in diagnosing ARDS, privileged information (chest x-rays) are sometimes only available for a portion of the training data. To address this issue, the Learning Using Partially Available Privileged Information (LUPAPI) paradigm is proposed. As there are multiple ways to incorporate partially available privileged information, three models built on classical SVM are described. Another complexity of diagnosing ARDS is the uncertainty in clinical interpretation of chest x-rays. To address this, the LUPAPI framework is then extended to incorporate label uncertainty, resulting in a novel and comprehensive machine learning paradigm - Learning Using Label Uncertainty and Partially Available Privileged Information (LULUPAPI). The proposed frameworks use Electronic Health Record (EHR) data as regular information, chest x-rays as partially available privileged information, and clinicians' confidence levels in ARDS diagnosis as a measure of label uncertainty. Experiments on an ARDS dataset demonstrate that both the LUPAPI and LULUPAPI models outperform SVM, with LULUPAPI performing better than LUPAPI.more » « less
- 
            Traumatic brain injury (TBI) is a massive public health problem worldwide. Accurate and fast automatic brain hematoma segmentation is important for TBI diagnosis, treatment and outcome prediction. In this study, we developed a fully automated system to detect and segment hematoma regions in head Computed Tomography (CT) images of patients with acute TBI. We first over-segmented brain images into superpixels and then extracted statistical and textural features to capture characteristics of superpixels. To overcome the shortage of annotated data, an uncertainty-based active learning strategy was designed to adaptively and iteratively select the most informative unlabeled data to be annotated for training a Support Vector Machine classifier (SVM). Finally, the coarse segmentation from the SVM classifier was incorporated into an active contour model to improve the accuracy of the segmentation. From our experiments, the proposed active learning strategy can achieve a comparable result with 5 times fewer labeled data compared with regular machine learning. Our proposed automatic hematoma segmentation system achieved an average Dice coefficient of 0.60 on our dataset, where patients are from multiple health centers and at multiple levels of injury. Our results show that the proposed method can effectively overcome the challenge of limited and highly varied dataset.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
