skip to main content

Search for: All records

Creators/Authors contains: "Gu, David Xianfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a framework for computational generation and conformal fabrication of woven thin-shell structures with arbitrary topology based on the foliation theory which decomposes a surface into a group of parallel leaves. By solving graph-valued harmonic maps on the input surface, we construct two sets of harmonic foliations perpendicular to each other. The warp and weft threads are created afterward and then manually woven to reconstruct the surface. The proposed computational method guarantees the smoothness of the foliation and the orthogonality between each pair of leaves from different foliations. Moreover, it minimizes the number of singularities to theoretical lower bound and produces the tensor product structure as globally as possible. This method is ideal for the physical realization of woven surface structures on a variety of applications, including wearable electronics, sheet metal craft, architectural designs, and conformal woven composite parts in the automotive and aircraft industries. The performance of the proposed method is demonstrated through the computational generation and physical fabrication of several free-form thin-shell structures. 
    more » « less