skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Gu, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A bstract In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU( k )/ℤ k , SO(2 k )/ℤ 2 , Sp(2 k )/ℤ 2 , E 6 /ℤ 3 , and E 7 /ℤ 2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G / K gauge theory for K a subgroup of the center of G . In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the description of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles. 
    more » « less
  2. null (Ed.)
    A bstract In this paper we explore nonabelian gauged linear sigma models (GLSMs) for symplectic and orthogonal Grassmannians and flag manifolds, checking e.g. global symmetries, Witten indices, and Calabi-Yau conditions, following up a proposal in the math community. For symplectic Grassmannians, we check that Coulomb branch vacua of the GLSM are consistent with ordinary and equivariant quantum cohomology of the space. 
    more » « less
  3. null (Ed.)
  4. In this paper, we extend the non-Abelian mirror proposal of two of the authors from two-dimensional gauge theories with connected gauge groups to the case of [Formula: see text] gauge groups with discrete theta angles. We check our proposed extension by counting and comparing vacua in mirrors to the known dual two-dimensional [Formula: see text] gauge theories. The mirrors in question are Landau–Ginzburg orbifolds, and for mirrors to [Formula: see text] gauge theories, the critical loci of the mirror superpotential often intersect fixed-point loci, so that to count vacua, one must take into account the twisted sector contributions. This is a technical novelty relative to the mirrors of gauge theories with connected gauge groups, for which critical loci do not intersect fixed-point loci and so no orbifold twisted sector contributions are pertinent. The vacuum computations turn out to be a rather intricate test of the proposed mirrors, in particular as untwisted sector states in the mirror to one theory are often exchanged with twisted sector states in the mirror to the dual. In cases with nontrivial IR limits, we also check that the central charges computed from the Landau–Ginzburg mirrors match those expected for the IR SCFTs. 
    more » « less
  5. null (Ed.)