skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Gu, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As drinking‐water scarcity grows worldwide, we need to improve predictions of the quantity and quality of our water resources. An overarching problem for model improvement is that we do not know the geological structure of aquifers in sufficient detail. In this work, we demonstrate that mineral‐water reactions imprint structure in the subsurface that impacts the flow and transport of some chemical species. Specifically, pyrite, a ubiquitous mineral, commonly oxidizes and depletes in the upper layers of the weathering profile in most humid watersheds, only remaining at depths of meters. We hypothesize that variations in concentrations (C) of pyrite‐derived sulfate released into rivers as a function of discharge (q) reflect the rate‐limiting step and depth of pyrite‐oxidizing layers. We found that logC− logqbehaviors thus differ in small and large watersheds in the Susquehanna River Basin as well as in selected watersheds in the Western United States. Although coal mining changes pyrite oxidation from closed to open system with respect to O2, patterns in stream chemistry as a function of discharge are consistent with deep and shallow pyrite oxidation zones in small and large watersheds respectively. Therefore, understanding the subsurface patterns of mineral reactions and how they affect the architecture of aquifers will elucidate patterns of changing river chemistry and our ability to manage water resources in the future under accelerated land use and climate change.

    more » « less
  2. Abstract. Endmember mixing analysis (EMMA) is often used by hydrogeochemiststo interpret the sources of stream solutes, but variations in streamconcentrations and discharges remain difficult to explain. We discoveredthat machine learning can be used to highlight patterns in stream chemistrythat reveal information about sources of solutes and subsurface groundwaterflowpaths. The investigation has implications, in turn, for the balance ofCO2 in the atmosphere. For example, CO2-driven weathering ofsilicate minerals removes carbon from the atmosphere over ∼106-year timescales. Weathering of another common mineral, pyrite, releases sulfuricacid that in turn causes dissolution of carbonates. In that process,however, CO2 is released instead of sequestered from the atmosphere. Thus, understanding long-term global CO2 sequestration by weatheringrequires quantification of CO2- versus H2SO4-drivenreactions. Most researchers estimate such weathering fluxes from streamchemistry, but interpreting the reactant minerals and acids dissolved in streams has been fraught with difficulty. We apply a machine-learningtechnique to EMMA in three watersheds to determine the extent of mineraldissolution by each acid, without pre-defining the endmembers. The resultsshow that the watersheds continuously or intermittently sequester CO2, but the extent of CO2 drawdown is diminished in areas heavily affectedby acid rain. Prior to applying the new algorithm, CO2 drawdown wasoverestimated. The new technique, which elucidates the importance ofdifferent subsurface flowpaths and long-timescale changes in the watersheds,should have utility as a new EMMA for investigating water resourcesworldwide. 
    more » « less
  3. In weathered bedrock aquifers, groundwater is stored in pores and fractures that open as rocks are exhumed and minerals interact with meteoric fluids. Little is known about this storage because geochemical and geophysical observations are limited to pits, boreholes, or outcrops or to inferences based on indirect measurements between these sites. We trained a rock physics model to borehole observations in a well-constrained ridge and valley landscape and then interpreted spatial variations in seismic refraction velocities. We discovered that P-wave velocities track where a porosity-generating reaction initiates in shale in three boreholes across the landscape. Specifically, velocities of 2.7 ± 0.2 km/s correspond with growth of porosity from dissolution of chlorite, the most reactive of the abundant minerals in the shale. In addition, sonic velocities are consistent with the presence of gas bubbles beneath the water table under valley and ridge. We attribute this gas largely to CO2produced by 1) microbial respiration in soils as meteoric waters recharge into the subsurface and 2) the coupled carbonate dissolution and pyrite oxidation at depth in the rock. Bubbles may nucleate below the water table because waters depressurize as they flow from ridge to valley and because pores have dilated as the deep rock has been exhumed by erosion. Many of these observations are likely to also describe the weathering and flow path patterns in other headwater landscapes. Such combined geophysical and geochemical observations will help constrain models predicting flow, storage, and reaction of groundwater in bedrock systems.

    more » « less
  4. null (Ed.)
    In spite of numerous programs and interventions, homelessness remains a significant societal concern. Long-term homelessness is particularly problematic because it can be increasingly difficult to escape from, and because it represents a continuous drain on societal resources. This paper develops a model for predicting long-term homelessness in response to a simple question: if an individual becomes homeless, what influences the individual's slide to long-term homelessness? The data we analyze to answer the question comes from the City of Boston. The model points to race, veteran status, disability, and age as key factors that predict this slide. The paper describes and illustrates the model along with problems encountered in data preparation and cleansing, prior scholarly work that helped to shape our decisions, and collaboration with participants in the ecosystem for homeless care that complemented the model-building effort. The results are important because they point to possible policy interventions (programs and funding) and process improvements (at homeless shelters) to mitigate this slide. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    A multi-component radical addition strategy enables difunctionalization of alkenes with heteroarenes and a variety of radical precursors, including N 3 , P(O)R 2 , and CF 3 . This unified approach for coupling diverse classes of electrophilic radicals and heteroarenes to vinyl ethers allows for direct, vicinal C–C as well as C–N, C–P, and C–R f bond formation. 
    more » « less