skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gu, Yan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Achieving stable bipedal walking on surfaces with unknown motion remains a challenging control problem due to the hybrid, time-varying, partially unknown dynamics of the robot and the difficulty of accurate state and surface motion estimation. Surface motion imposes uncertainty on both system parameters and non-homogeneous disturbance in the walking robot dynamics. In this paper, we design an adaptive ankle torque controller to simultaneously address these two uncertainties and propose a step-length planner to minimize the required control torque. Typically, an adaptive controller is used for a continuous system. To apply adaptive control on a hybrid system such as a walking robot, an intermediate command profile is introduced to ensure a continuous error system. Simulations on a planar bipedal robot, along with comparisons against a baseline controller, demonstrate that the proposed approach effectively ensures stable walking and accurate tracking under unknown, time-varying disturbances. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. The kd-tree is one of the most widely used data structures to manage multi-dimensional data. Due to the ever-growing data volume, it is imperative to consider parallelism in kd-trees. However, we observed challenges in existing parallel kd-tree implementations, for both constructions and updates. The goal of this paper is to develop efficient in-memory kd-trees by supporting high parallelism and cache-efficiency. We propose the Pkd-tree (Parallel kd-tree), a parallel kd-tree that is efficient both in theory and in practice. The Pkd-tree supports parallel tree construction, batch update (insertion and deletion), and various queries including k-nearest neighbor search, range query, and range count. We proved that our algorithms have strong theoretical bounds in work (sequential time complexity), span (parallelism), and cache complexity. Our key techniques include 1) an efficient construction algorithm that optimizes work, span, and cache complexity simultaneously, and 2) reconstruction-based update algorithms that guarantee the tree to be weight-balanced. With the new algorithmic insights and careful engineering effort, we achieved a highly optimized implementation of the Pkd-tree. We tested Pkd-tree with various synthetic and real-world datasets, including both uniform and highly skewed data. We compare the Pkd-tree with state-of-the-art parallel kd-tree implementations. In all tests, with better or competitive query performance, Pkd-tree is much faster in construction and updates consistently than all baselines. We released our code. 
    more » « less
    Free, publicly-accessible full text available February 10, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Abstract Accurate control of a humanoid robot's global position (i.e., its three-dimensional (3D) position in the world) is critical to the reliable execution of high-risk tasks such as avoiding collision with pedestrians in a crowded environment. This paper introduces a time-based nonlinear control approach that achieves accurate global-position tracking (GPT) for multi-domain bipedal walking. Deriving a tracking controller for bipedal robots is challenging due to the highly complex robot dynamics that are time-varying and hybrid, especially for multi-domain walking that involves multiple phases/domains of full actuation, over actuation, and underactuation. To tackle this challenge, we introduce a continuous-phase GPT control law for multi-domain walking, which provably ensures the exponential convergence of the entire error state within the full and over actuation domains and that of the directly regulated error state within the underactuation domain. We then construct sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain tracking error system under the proposed GPT control law. We illustrate the proposed controller design through both three-domain walking with all motors activated and two-domain gait with inactive ankle motors. Simulations of a ROBOTIS OP3 bipedal humanoid robot demonstrate the satisfactory accuracy and convergence rate of the proposed control approach under two different cases of multi-domain walking as well as various walking speed and desired paths. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available December 16, 2025
  6. Free, publicly-accessible full text available July 15, 2025
  7. Free, publicly-accessible full text available June 17, 2025
  8. Free, publicly-accessible full text available June 17, 2025
  9. This work investigates the robot state estimation problem within a non-inertial environment. The proposed state estimation approach relaxes the common assumption of static ground in the system modeling. The process and measurement models explicitly treat the movement of the non-inertial environments without requiring knowledge of its motion in the inertial frame or relying on GPS or sensing environmental landmarks. Further, the proposed state estimator is formulated as an invariant extended Kalman filter (InEKF) [1] with the deterministic part of its process model obeying the groupaffine property, leading to log-linear error dynamics. The observability analysis confirms the robot’s pose (i.e., position and orientation) and velocity relative to the non-inertial environment are observable under the proposed InEKF. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025