skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gu, Zheng Rong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Legume crops such as soybean obtain a large portion of their nitrogen nutrition through symbiotic nitrogen fixation by diazotrophic rhizobia bacteria in root nodules. However, nodule occupancy by low‐capacity nitrogen‐fixing rhizobia can lead to lower‐than‐optimal levels of nitrogen fixation. Seed/root coating with engineered materials such as graphene‐carrying biomolecules that may promote specific attraction/attachment of desirable bacterial strains is a potential strategy that can help overcome this rhizobia competition problem. As a first step towards this goal, we assessed the impact of graphene on soybean andBradyrhizobiumusing a set of growth, biochemical, and physiological assays. Three different concentrations of graphene were tested for toxicity in soybean (50, 250, and 1,000 mg/l) andBradyrhizobia(25, 50, and 100 mg/l). Higher graphene concentrations (250 mg/l and 1,000 mg/l) promoted seed germination but slightly delayed plant development. Spectrometric and microscopy assays for hydrogen peroxide and superoxide anion suggested that specific concentrations of graphene led to higher levels of reactive oxygen species in the roots. In agreement, these roots also showed higher activities of antioxidant enzymes, catalase, and ascorbate peroxidase. Conversely, no toxic effects were detected onBradyrhizobiatreated with graphene, and neither did they have higher levels of reactive oxygen species. Graphene treatments at 250 mg/l and 1,000 mg/l significantly reduced the number of nodules, but rhizobia infection and the overall nitrogenase activity were not affected. Our results show that graphene can be used as a potential vehicle for seed/root treatment.

     
    more » « less