- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
00000050000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Guan, Jingjiao (5)
-
Li, Yan (2)
-
Ma, Biwu (2)
-
Miao, Yu (2)
-
Worku, Michael (2)
-
Xia, Junfei (2)
-
Zhou, Chenkun (2)
-
Zhou, Yan (2)
-
Barreda, Jorge L. (1)
-
Bejoy, Julie (1)
-
Bullock, James (1)
-
Chaaban, Maya (1)
-
Chen, Banghao (1)
-
Cheng, Wenhao (1)
-
Clark, Ronald (1)
-
Djurovich, Peter (1)
-
Du, Mao-Hua (1)
-
Gao, Hanwei (1)
-
Griffin, Kyle (1)
-
Hu, Longqian (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yan, Yuanwei ; Bejoy, Julie ; Xia, Junfei ; Griffin, Kyle ; Guan, Jingjiao ; Li, Yan ( , Scientific Reports)
-
Song, Liqing ; Yuan, Xuegang ; Jones, Zachary ; Vied, Cynthia ; Miao, Yu ; Marzano, Mark ; Hua, Thien ; Sang, Qing-Xiang Amy ; Guan, Jingjiao ; Ma, Teng ; et al ( , Scientific Reports)
-
Zhou, Chenkun ; Lin, Haoran ; Neu, Jennifer ; Zhou, Yan ; Chaaban, Maya ; Lee, Sujin ; Worku, Michael ; Chen, Banghao ; Clark, Ronald ; Cheng, Wenhao ; et al ( , ACS Energy Letters)
-
Tian, Yu ; Zhou, Chenkun ; Worku, Michael ; Wang, Xi ; Ling, Yichuan ; Gao, Hanwei ; Zhou, Yan ; Miao, Yu ; Guan, Jingjiao ; Ma, Biwu ( , Advanced Materials)
Abstract Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m−2and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.