skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Guan, Qian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo.

     
    more » « less
  2. Abstract

    Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the δ‐adjusted and control‐based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets a broad class of treatment effect estimands defined as functionals of treatment‐specific survival functions, taking into account missing data due to censoring. Multiple imputation facilitates the use of simple full‐sample estimation; however, the standard Rubin's combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the nonparametric bootstrap counterpart. We evaluate the finite‐sample performance of the proposed SMIM through simulation and an application on an HIV clinical trial.

     
    more » « less