Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration.