Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Voltage regulation, frequency restoration, and reactive/active power sharing are the crucial tasks of the microgrid's secondary control, especially in the islanding operating mode. Because sensors and communication links in a microgrid are subject to noise, it is of paramount value to design a noise-resilient secondary voltage and frequency control. This paper proposes a minimum variance control approach for the secondary control of AC microgrids that can effectively perform noise attenuation, voltage/frequency restoration, and reactive/active power sharing. To this end, the nonlinear generalized minimum variance (NGMV) control approach is introduced to the islanded microgrid's secondary control system. The effectiveness of the proposed control approach is verified by simulating two microgrid test systems in MATLAB.more » « less
-
This paper presents an experimental demonstration of a novel real-time Energy Management System (EMS) for inverter-based microgrids to achieve optimal economic operation using a simple dynamic algorithm without offline optimization process requirements. The dynamic algorithm solves the economic dispatch problem offering an adequate stability performance and an optimal power reference tracking under sudden load and generation changes. Convergence, optimality and frequency regulation properties of the real-time EMS are shown, and the effectiveness and compatibility with inner and primary controllers are validated in experiments, showing better performance on optimal power tracking and frequency regulation than conventional droop control power sharing techniques.more » « less
-
DC microgrids have attracted significant attention over the last decade in both academia and industry. DC microgrids have demonstrated superiority over AC microgrids with respect to reliability, efficiency, control simplicity, integration of renewable energy sources, and connection of dc loads. Despite these numerous advantages, designing and implementing an appropriate protection system for dc microgrids remains a significant challenge. The challenge stems from the rapid rise of dc fault current which must be extinguished in the absence of naturally occurring zero crossings, potentially leading to sustained arcs. In this paper, the challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods. In each part, a comprehensive review has been carried out. Finally, future trends in the protection of DC microgrids are briefly discussed.more » « less
-
This paper presents a novel harmonic-based overcurrent relay which detects and isolates three-phase faults in a meshed microgrid. The harmonic signals are generated by two Distributed Generators (DGs) which each of them communicate with its adjacent DG. In the first step, a set of features are extracted from DG output signal and then fed to a Support Vector Machine (SVM) to detect occurrence of fault. Once the fault is detected, based on minimum voltage measured by DG, two closest DGs will recognize and these two DGs inject two distinct harmonics to activate harmonic-based relays. As each set of relays located at either beginning or end of each section is activated by current with specific frequency, these relays behave like directional relays without using voltage transformers. As a result, the proposed method is cost-effective solution. The optimum Time Dial Settings (TDSs) of these relays are obtained by solving a coordination problem with Particle Swarm Optimization (PSO) algorithm. Real-time results are taken by OPAL-RT to show the effectiveness of the proposed method for two different locations of fault in a meshed microgrid.more » « less
-
This paper presents a novel noncommunication protection architecture based on utilizing the selected Distributed Generators (DGs) which provide high-frequency harmonics for harmonic-based overcurrent relays to detect and isolate three-phase faults in meshed microgrids. The most prominent features of this structure include limited number of DGs required to inject harmonics, no need for using centralized communication system, and the fault can be detected and located in all conditions such as load disconnection/connection and DG disconnection/connection. The optimum Time Dial Settings (TDSs) of these relays are obtained by solving a coordination problem with Particle Swarm Optimization (PSO) algorithm. Real-time results are produced using OPAL-RT to show the effectiveness of the proposed method for two different locations of faults in a meshed microgrid.more » « less
-
Fault Current Limiters (FCLs) are one of the main solutions to upcoming challenges in microgrid protection. Regarding the high penetration of distributed generations (DGs) in future power system, designing cheap and effective FCL is a necessity. The present study addresses this issue by proposing an embedded FCL operating based on modifying the secondary control of four-wire DG. As this method is presented for a four-wire system, besides very low implementing cost, it has independency and flexibility to only limit the current of DG faulted phase. This study also provides real-time simulation results by OPAL-RT to compare the proposed method with a virtual-impedance-based FCL to validate its effectiveness. Finally, experimental results are presented to validate the effectiveness of the proposed FCL.more » « less