skip to main content

Search for: All records

Creators/Authors contains: "Guerrero, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce ShapeCoder, the first system capable of taking a dataset of shapes, represented with unstructured primitives, and jointly discovering (i) usefulabstractionfunctions and (ii) programs that use these abstractions to explain the input shapes. The discovered abstractions capture common patterns (both structural and parametric) across a dataset, so that programs rewritten with these abstractions are more compact, and suppress spurious degrees of freedom. ShapeCoder improves upon previous abstraction discovery methods, finding better abstractions, for more complex inputs, under less stringent input assumptions. This is principally made possible by two methodological advancements: (a) a shape-to-program recognition network that learns to solve sub-problems and (b) the use of e-graphs, augmented with a conditional rewrite scheme, to determine when abstractions with complex parametric expressions can be applied, in a tractable manner. We evaluate ShapeCoder on multiple datasets of 3D shapes, where primitive decompositions are either parsed from manual annotations or produced by an unsupervised cuboid abstraction method. In all domains, ShapeCoder discovers a library of abstractions that captures high-level relationships, removes extraneous degrees of freedom, and achieves better dataset compression compared with alternative approaches. Finally, we investigate how programs rewritten to use discovered abstractions prove useful for downstream tasks.

    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 23, 2024
  3. Abstract

    Procedural models (i.e. symbolic programs that output visual data) are a historically‐popular method for representing graphics content: vegetation, buildings, textures, etc. They offer many advantages: interpretable design parameters, stochastic variations, high‐quality outputs, compact representation, and more. But they also have some limitations, such as the difficulty of authoring a procedural model from scratch. More recently, AI‐based methods, and especially neural networks, have become popular for creating graphic content. These techniques allow users to directly specify desired properties of the artifact they want to create (via examples, constraints, or objectives), while a search, optimization, or learning algorithm takes care of the details. However, this ease of use comes at a cost, as it's often hard to interpret or manipulate these representations. In this state‐of‐the‐art report, we summarize research on neurosymbolic models in computer graphics: methods that combine the strengths of both AI and symbolic programs to represent, generate, and manipulate visual data. We survey recent work applying these techniques to represent 2D shapes, 3D shapes, and materials & textures. Along the way, we situate each prior work in a unified design space for neurosymbolic models, which helps reveal underexplored areas and opportunities for future research.

    more » « less
  4. Abstract

    Despite the ubiquitous use of materials maps in modern rendering pipelines, their editing and control remains a challenge. In this paper, we present an example‐based material control method to augment input material maps based on user‐provided material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer, optimizing its latent space using differentiable rendering. Our method transfers the micro and meso‐structure textures of user provided target(s) photographs, while preserving the structure and quality of the input material. We show our methods can control existing material maps, increasing realism or generating new, visually appealing materials.

    more » « less
  5. null (Ed.)
  6. null (Ed.)
    We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views. Previous work on learning shape reconstruction from multiple views uses discrete representations such as point clouds or voxels, while continuous surface generation approaches lack multi-view consistency. We address these issues by designing neural networks capable of generating high-quality parametric 3D surfaces which are also consistent between views. Furthermore, the generated 3D surfaces preserve accurate image pixel to 3D surface point correspondences, allowing us to lift texture information to reconstruct shapes with rich geometry and appearance. Our method is supervised and trained on a public dataset of shapes from common object categories. Quantitative results indicate that our method significantly outperforms previous work, while qualitative results demonstrate the high quality of our reconstructions. 
    more » « less
  7. null (Ed.)