skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guimaraes, Jean R. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent studies demonstrate a short 3–6-month atmospheric lifetime for mercury (Hg). This implies Hg emissions are predominantly deposited within the same hemisphere in which they are emitted, thus placing increasing importance on considering Hg sources, sinks and impacts from a hemispheric perspective. In the absence of comprehensive Hg data from the Southern Hemisphere (SH), estimates and inventories for the SH have been drawn from data collected in the NH, with the assumption that the NH data are broadly applicable. In this paper, we centre the uniqueness of the SH in the context of natural biogeochemical Hg cycling, with focus on the midlatitudes and tropics. Due to its uniqueness, Antarctica warrants an exclusive review of its contribution to the biogeochemical cycling of Hg and is therefore excluded from this review. We identify and describe five key natural differences between the hemispheres that affect the biogeochemical cycling of Hg: biome heterogeneity, vegetation type, ocean area, methylation hotspot zones and occurence of volcanic activities. We review the current state of knowledge of SH Hg cycling within the context of each difference, as well as the key gaps that impede our understanding of natural Hg cycling in the SH. The differences demonstrate the limitations in using NH data to infer Hg processes and emissions in the SH. 
    more » « less