skip to main content

Search for: All records

Creators/Authors contains: "Guimond, Austin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Premise

    Joshua trees (Yucca brevifoliaandY. jaegeriana) and their yucca moth pollinators (Tegeticula syntheticaandT. antithetica) are a model system for studies of plant–pollinator coevolution and, they are thought to be one of the only cases in which there is compelling evidence for cospeciation driven by coevolution. Previous work attempted to evaluate whether divergence between the plant and their pollinators was contemporaneous. That work concluded that the trees diverged more than 5 million years ago—well before the pollinators. However, clear inferences were hampered by a lack of data from the nuclear genome and low genetic variation in chloroplast genes. As a result, divergence times in the trees could not be confidently estimated.


    We present an analysis of whole chloroplast genome sequence data and RADseq data from >5000 loci in the nuclear genome. We developed a molecular clock for the Asparagales and the Agavoideae using multiple fossil calibration points. Using Bayesian inference, we produced new estimates for the age of the genusYuccaand for Joshua trees. We used calculated summary statistics describing genetic variation and used coalescent‐based methods to estimate population genetic parameters.


    We find that the Joshua trees are moderately genetically differentiated, but that they diverged quite recently (~100–200 kya), and much more recently than their pollinators.


    The results argue against the notion that coevolution directly contributed to speciation in this system, suggesting instead that coevolution with pollinators may have reinforced reproductive isolation following initial divergence in allopatry.

    more » « less