Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polymer nanocomposites with high loadings of nanoparticles (NPs) exhibit exceptional mechanical and transport properties. Separation of polymers and NPs from such nanocomposites is a critical step in enabling the recycling of these components and reducing the potential environmental hazards that can be caused by the accumulation of nanocomposite wastes in landfills. However, the separation typically requires the use of organic solvents or energy‐intensive processes. Using polydimethylsiloxane (PDMS)‐infiltrated SiO2NP films, we demonstrate that the polymers can be separated from the SiO2NP packings when these nanocomposites are exposed to high humidity and water. The findings indicate that the charge state of the NPs plays a significant role in the propensity of water to undergo capillary condensation within the PDMS‐filled interstitial pores. We also show that the size of NPs has a crucial impact on the kinetics and extent of PDMS expulsion, illustrating the importance of capillary forces in inducing PDMS expulsion. We demonstrate that the separated polymer can be collected and reused to produce a new nanocomposite film. The work provides insightful guidelines on how to design and fabricate end‐of‐life recyclable high‐performance nanocomposites.more » « less
-
Abstract Intercalation pseudocapacitance has emerged as a promising energy storage mechanism that combines the energy density of intercalation materials with the power density of capacitors. Niobium pentoxide was the first material described as exhibiting intercalation pseudocapacitance. The electrochemical kinetics for charging/discharging this material are surface‐limited for a wide range of conditions despite intercalation via diffusion. Investigations of niobium pentoxide nanostructures are diverse and numerous; however, none have yet compared performance while adjusting a single architectural parameter at a time. Such a comparative approach reduces the reliance on models and the associated assumptions when seeking nanostructure–property relationships. Here, a tailored isomorphic series of niobium pentoxide nanostructures with constant pore size and precision tailored wall thickness is examined. The sweep rate at which niobium pentoxide transitions from being surface‐limited to being diffusion‐limited is shown to depend sensitively upon the nanoscale dimensions of the niobium pentoxide architecture. Subsequent experiments probing the independent effects of electrolyte concentration and film thickness unambiguously identify solid‐state lithium diffusion as the dominant diffusion constraint even in samples with just 48.5–67.0 nm thick walls. The resulting architectural dependencies from this type of investigation are critical to enable energy‐dense nanostructures that are tailored to deliver a specific power density.more » « less