Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Intelligent thought is the product of efficient neural information processing, which is embedded in fine-grained, topographically organized population responses and supported by fine-grained patterns of connectivity among cortical fields. Previous work on the neural basis of intelligence, however, has focused on coarse-grained features of brain anatomy and function because cortical topographies are highly idiosyncratic at a finer scale, obscuring individual differences in fine-grained connectivity patterns. We used a computational algorithm, hyperalignment, to resolve these topographic idiosyncrasies and found that predictions of general intelligence based on fine-grained (vertex-by-vertex) connectivity patterns were markedly stronger than predictions based on coarse-grained (region-by-region) patterns. Intelligence was best predicted by fine-grained connectivity in the default and frontoparietal cortical systems, both of which are associated with self-generated thought. Previous work overlooked fine-grained architecture because existing methods could not resolve idiosyncratic topographies, preventing investigation where the keys to the neural basis of intelligence are more likely to be found.more » « less
-
Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment captures shared information by projecting pattern vectors for neural responses and connectivities into a common, high-dimensional information space, rather than by aligning topographies in a canonical anatomical space. Individual transformation matrices project information from individual anatomical spaces into the common model information space, preserving the geometry of pairwise dissimilarities between pattern vectors, and model cortical topography as mixtures of overlapping, individual-specific topographic basis functions, rather than as contiguous functional areas. The fundamental property of brain function that is preserved across brains is information content, rather than the functional properties of local features that support that content. In this Perspective, we present the conceptual framework that motivates hyperalignment, its computational underpinnings for joint modeling of a common information space and idiosyncratic cortical topographies, and discuss implications for understanding the structure of cortical functional architecture.more » « less
An official website of the United States government
