Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
By tightening the conventional Lieb-Robinson bounds to better handle systems that lack translation invariance, we determine the extent to which “weak links” suppress operator growth in disordered one dimensional spin chains. In particular, we prove that ballistic growth is impossible when the distribution of coupling strengths μ(J ) has a sufficiently heavy tail at small J and we identify the correct dynamical exponent to use instead. Furthermore, through a detailed analysis of the special case in which the couplings are genuinely random and independent, we find that the standard formulation of Lieb-Robinson bounds is insufficient to capture the complexity of the dynamics—we must distinguish between bounds that hold for all sites of the chain and bounds that hold for a subsequence of sites and we show by explicit example that these two can have dramatically different behaviors. All the same, our result for the dynamical exponent is tight, in that we prove by counterexample that there cannot exist any Lieb-Robinson bound with a smaller exponent. We close by discussing the implications of our results, both major and minor, for numerous applications ranging from quench dynamics to the structure of ground states.more » « less
An official website of the United States government
