skip to main content


Search for: All records

Creators/Authors contains: "Guo, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 9, 2025
  2. Abstract

    Sodium–sulfur (Na–S) batteries with durable Na‐metal stability, shuttle‐free cyclability, and long lifespan are promising to large‐scale energy storages. However, meeting these stringent requirements poses huge challenges with the existing electrolytes. Herein, a localized saturated electrolyte (LSE) is proposed with 2‐methyltetrahydrofuran (MeTHF) as an inner sheath solvent, which represents a new category of electrolyte for Na–S system. Unlike the traditional high concentration electrolytes, the LSE is realized with a low salt‐to‐solvent ratio and low diluent‐to‐solvent ratio, which pushes the limit of localized high concentration electrolyte (LHCE). The appropriate molecular structure and solvation ability of MeTHF regulate a saturated inner sheath, which features a reinforced coordination of Na+to anions, enlarged Na+‐solvent distance, and weakened anion‐diluent interaction. Such electrolyte configuration is found to be the key to build a sustainable interphase and a quasi‐solid–solid sulfur redox process, making a dendrite‐inhibited and shuttle‐free Na–S battery possible. With this electrolyte, pouch cells with decent cycling performance under rather demanding conditions are demonstrated.

     
    more » « less
  3. Mesoporous polyetherimides are important high-performance polymers. Conventional strategies to prepare porous polyetherimides, and polyimide in general, are based on covalent organic framework or thermolysis of sacrificial polymers. The former produces micropores due to intrinsically crosslinked microstructures, and the latter results in macropores because of a blowing effect by the sacrificial polymers. The preparation of mesopores remains a challenge. Here we have prepared mesoporous polyetherimide films by hydrolyzing polylactide- b -polyetherimide- b -polylactide (AIA). Controlled by molecular weight and volume fraction of polylactide in AIA, the porous films exhibit an average pore width of 24 nm. The mesoporous polyetherimide films exhibit a storage modulus of ∼1 GPa at ambient temperatures. This work advances the chemistry of high-performance polymers and provides an alternative strategy to prepare mesoporous polymers, enabling potential use as high-performance membranes for separation, purification, and electrochemistry. 
    more » « less
  4. Abstract

    Rechargeable aqueous Zn−MnO2batteries are promising for stationary energy storage because of their high energy density, safety, environmental benignity, and low cost. Conventional gravel MnO2cathodes have low electrical conductivity, slow ion (de‐)insertion, and poor cycle stability, resulting in poor recharging performance and severe capacity fading. To improve the rechargeability of MnO2, strategies have been devised such as depositing micrometer‐thick MnO2on carbon cloth and blending nanostructured MnO2with additives and binders. The low electrical conductivity of binders and sluggish ion (de‐)insertion in micrometer‐thick MnO2, however, still limit the fast‐charging performance. Herein, we have prepared porous carbon fiber (PCF) supported MnO2cathodes (PCF@MnO2), comprised of nanometer‐thick MnO2uniformly deposited on electrospun block copolymer‐derived PCF that have abundant uniform mesopores. The high electrical conductivity of PCF, fast electrochemical reactions in nanometer‐thick MnO2,and fast ion transport through porous nonwoven fibers contribute to a high rate capability at high loadings. PCF@MnO2, at a MnO2loading of 59.1 wt %, achieves a MnO2‐based specific capacity of 326 and 184 mAh g−1at a current density of 0.1 and 1.0 A g−1, respectively. Our approach of block copolymer‐based PCF as a support for zinc‐ion cathode inspires future designs of fast‐charging electrodes with other active materials.

     
    more » « less