- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01000010000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Taicheng (2)
-
Zhang, Xiangliang (2)
-
Chawla, Nitesh (1)
-
Chen, Xiuying (1)
-
Coley, Connor W (1)
-
Gao, Xin (1)
-
Keto, Angus (1)
-
Krenske, Elizabeth H (1)
-
Liang, Shangsong (1)
-
Ma, Changsheng (1)
-
Stuyver, Thijs (1)
-
Underdue, Morgan (1)
-
Wiest, Olaf (1)
-
Yang, Qiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 12, 2025
-
Ma, Changsheng ; Guo, Taicheng ; Yang, Qiang ; Chen, Xiuying ; Gao, Xin ; Liang, Shangsong ; Chawla, Nitesh ; Zhang, Xiangliang ( , 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP))Inverse molecular generation is an essential task for drug discovery, and generative models offer a very promising avenue, especially when diffusion models are used. Despite their great success, existing methods are inherently limited by the lack of a semantic latent space that can not be navigated and perform targeted exploration to generate molecules with desired properties. Here, we present a property-guided diffusion model for generating desired molecules, which incorporates a sophisticated diffusion process capturing intricate interactions of nodes and edges within molecular graphs and leverages a time-dependent molecular property classifier to integrate desired properties into the diffusion sampling process. Furthermore, we extend our model to a multi-property-guided paradigm. Experimental results underscore the competitiveness of our approach in molecular generation, highlighting its superiority in generating desired molecules without the need for additional optimization steps.more » « lessFree, publicly-accessible full text available April 14, 2025