Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electric double layers form at electrode-electrolyte interfaces and often play defining roles in governing electrochemical reaction rates and selectivity. While double layer formation has remained an active area of research for more than a century, most frameworks used to predict electric double layer properties, such as local ion concentrations, potential gradients, and reactant chemical potentials, remain rooted in classical Gouy-Chapman-Stern theory, which neglects ion-ion interactions and assumes non-reactive interfaces. Yet, recent findings from the surface forces and electrocatalysis communities have highlighted how the emergence of ion-ion interactions fundamentally alters electric double layer formation mechanisms and interface properties. Notably, recent studies with ionic liquids show that ionic correlations and clustering can substantially alter reaction rates and selectivity, especially in concentrated electrolytes. Further, emerging studies suggest that electric double layer structures and dynamics significantly change at potentials where electrocatalytic reactions occur. Here, we provide our perspective on how ion-ion interactions can impact electric double layer properties and contribute to modulating electrocatalytic systems, especially under conditions where high ion concentrations and large applied potentials cause deviations from classical electrolyte theory. We also summarize growing questions and opportunities to further explore how electrochemical reactions can drastically alter electric double layer properties. We conclude with a perspective on how these findings open the door to using electrocatalytic reactions to study electric double layer formation and achieve electrochemical conversion by engineering electrode-electrolyte interfaces.more » « less
-
Electric double layers are crucial to energy storage and electrocatalytic device performance. While double layer formation originates in electrostatic interactions, electric double layer properties are governed by a balance of both electrostatic and entropic driving forces; favorable ion-surface electrostatic interactions attract counterions to charged surfaces to compensate, or "screen," potentials, but the confinement of these same ions from a bulk reservoir to the interface incurs an entropic penalty. Here, we use a dicationic imidazolium ionic liquid and its monovalent analogue to explore how cation valence and entropy influence double layer formation and electrochemical reactivity using CO2 electroreduction as a model reaction. We find that divalent and monovalent cations display similar CO2 reduction kinetics but differ vastly in steady-state reactivity due to rapid electrochemically induced precipitation of insulating dicationic (bi)carbonate films. Using in situ surface-enhanced Raman scattering spectroscopy, we find that potential-dependent reorientation occurs at similar potentials between the two ionic liquids, but the introduction of a covalent link in the divalent cation imparts a more ordered double layer structure that favors (bi)carbonate precipitation. In mixed monovalent-divalent electrolytes, we find that the divalent cations dominate interfacial properties by preferentially accumulating at surfaces even at very low relative concentrations. Our findings confirm that ion entropy plays a key role in modulating local electrochemical environments and highlight how double layer properties are very sensitive to the properties of counterions that pay the lowest entropic penalty to accumulate at interfaces. Overall, we illustrate that ion entropy provides a new knob to tune reaction microenvironments and unveil how entropy plays a major role in modulating electrochemical reactivity in mixed ion electrolytes.more » « less
-
Interfacial microenvironments critically define reaction pathways for electrocatalytic processes through a combination of electric field gradients and proton activity. Non-aqueous ionic liquid electrolytes have been shown to sustain enhanced interfacial electric field gradients at intermediate ion concentration regimes of around 1 M, creating local environments that promote CO2 electroreduction. Notably, water at low concentrations absorbed by non-aqueous electrolytes is usually assumed to be the proton donor for CO2 reduction. Consumption of protons causes proton donors to become more negative by one unit charge, which significantly modifies the local concentration of charged species and hence should strongly impact local electric fields. Yet, how the coupling between proton donation and changing interfacial electric fields influences electrocatalytic processes in non-aqueous electrolytes remains largely unexplored. In this work, we show that the high activity of 1,3-dialkylimidazolium ionic liquids for CO2 reduction in acetonitrilebased electrolytes stems from the ability to act as cationic proton donors that release neutral conjugate bases. Using in situ electrochemical surface-enhanced Raman spectroscopy, we find that the formation of neutral conjugate bases from imidazolium cations preserves local electric field strengths at electrode-electrolyte interfaces, providing a powerful strategy to maintain an active local microenvironment for CO2 reduction. In contrast, conditions where water behaves as the primary proton donor generates [OH]- anions as negative “co-ions” in the electric double layer, which weakens the interfacial electric field and significantly compromises the steady-state CO2 reduction activity. Our study highlights that electrochemical driving forces are highly sensitive to the charge state of both reactant and product species and highlights the fact that the generation of interfacial co-ions plays a key role in determining electrochemical driving forces.more » « less
-
null (Ed.)Plasmonic nanostructures possess broadly tunable optical properties with catalytically active surfaces. They offer new opportunities for achieving efficient solar-to-chemical energy conversion. Plasmonic metal–semiconductor heterostructures have attracted heightened interest due to their capability of generating energetic hot electrons that can be collected to facilitate chemical reactions. In this article, we present a detailed survey of recent examples of plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry, including plasmonic metal–oxide, plasmonic metal–two-dimensional materials, and plasmonic metal–metal–organic frameworks. We conclude with a discussion on the remaining challenges in the field and an outlook regarding future opportunities for designing high-performance plasmonic metal–semiconductor heterostructures for photochemistry.more » « less
-
Abstract Utilizing plasmon‐generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot‐carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole‐transfer dynamics and electron‐transfer dynamics. This review summarizes a comprehensive understanding of both hot‐hole and hot‐electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis.more » « less