skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Yi-Syuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kothe, Erika (Ed.)
    Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment. In this study, we demonstrate the development and use of an engineered microhabitat to visualize fungal growth in response to varied levels of confinement. Microfluidics were fabricated using photolithography and conventional soft lithography, assembled onto glass slides, and prepared to accommodate fungal cultures. Selected fungal strains across three phyla (Ascomycota:Morchella sextalata,Fusarium falciforme; Mucoromycota:Linnemannia elongata,Podila minutissima,Benniella; Basidiomycota:Laccaria bicolor, andSerendipitasp.) were cultured within microhabitats and imaged using time-lapse microscopy to visualize development at the mycelial level. Fungal hyphae of each strain were imaged as they penetrated through microchannels with well-defined pore dimensions. The hyphal penetration rates through the microchannels were quantified via image analysis. Other behaviors, including differences in the degree of branching, peer movement, and tip strength were also recorded for each strain. Our results provide a repeatable and easy-to-use approach for culturing fungi within a microfluidics platform and for visualizing the impact of confinement on hyphal growth and other fungal behaviors pertinent to their remodeling of the underground environment. 
    more » « less