skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Yibo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scale-out datacenter network fabrics enable network operators to translate improved link and switch speeds directly into end-host throughput. Unfortunately, limits in the underlying CMOS packet switch chip manufacturing roadmap mean that NICs, links, and switches are not getting faster fast enough to meet demand. As a result, operators have introduced alternative, parallel fabric designs in the core of the network that deliver N-times the bandwidth by simply forwarding traffic over any of N parallel network fabrics. In this work, we consider extending this parallel network idea all the way to the end host. Our initial impressions found that direct application of existing path selection and forwarding techniques resulted in poor performance. Instead, we show that appropriate path selection and forwarding protocols can not only improve the performance of existing, homogeneous parallel fabrics, but enable the development of heterogeneous parallel network fabrics that can deliver even higher bandwidth, lower latency, and improved resiliency than traditional designs constructed from the same constituent components. 
    more » « less